Show simple item record

dc.contributor.authorRíos Ruiz, Winston Franz
dc.contributor.authorTorres Delgado, Jorge
dc.identifier.citationAltschul, S.F., Gish, W., Miller, W., Myers, E.W., & Lipman, D.J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403-410. Ahmed, B., & Mirza, M. S. (2013). Effects of inoculation with plant growth promoting rhizobacteria (PGPRs) on different growth parameters of cold area rice variety, Fakre malakand. African Journal of Microbiology Research, 7, 1651-1656. Aon, M., Khalid, M., Hussain, S., Naveed, M., & Akhtar, M. J. (2015). Diazotrophic inoculation supplemented nitrogen demand of flooded rice under field conditions. Pakistan Journal of Agricultural Sciences, 52, 145-150. Araújo, A.D.S., Baldani, V.L.D., Galisa, P.S., Pereira, J.A., & Baldani, J.I. (2013). Response of traditional upland rice varieties to inoculation with selected diazotrophic bacteria isolated from rice cropped at the northeast region of Brazil. Applied Soil Ecology, 64, 49-55. Baldani, V.D., Baldani, J.I., & Döbereiner, J. (2000). Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biology and Fertility of Soils, 30, 485-491. Choudhary, R.L., Kumar, D., Shivay, Y.S., Anand, A., & Nain, L. (2013). Yield and quality of rice (Oryza sativa) hybrids grown by SRI method with and without plant growth promoting rhizobacteria. Indian Journal of Agronomy, 58, 430-433. Chun, J. 2001. PHYDIT. Molecular sequence editor for phylogeny. Version 3.1. Dar, A.I., Saleem, F., Ahmad, M., Tariq, M., Khan, A., Ali, A., & Nasir, I.A. (2014). Characterization and efficiency assessment of PGPR for enhancement of rice (Oryza sativa L.) yield. Advancements in Life Sciences, 2, 38-45. de Souza, R., Beneduzi, A., Ambrosini, A., Da Costa, P.B., Meyer, J., Vargas, L.K., Schoenfeld, R., Passaglia, L. M. (2013). The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant and soil, 366, 585-603. de Souza, R., Schoenfeld, R., & Passaglia, L. M. (2016). Bacterial inoculants for rice: effects on nutrient uptake and growth promotion. Archives of Agronomy and Soil Science, 62, 561-569. Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., & Robledo, C.W. (2011). InfoStat, versión 2011, Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Elekhtyar, N.M. (2016) Influence of different plant growth promoting rhizobacteria (PGPR) strains on rice promising line. Proceedings, The Sixth Field Crops Conference , FCRI, ARC, Giza, Egypt. Ferreira, J.S., Baldani, J.I., & Baldani, V.L.D. (2010). Seleção de inoculantes a base de turfa contendo bactérias diazotróficas em duas variedades de arroz. Maringá, 32, 179-185. García de Román, A.L. (1986). Componentes del rendimiento en arroz: auxiliar didáctico. CIAT-Cali-Colombia. Govindarajan, M., Balandreau, J., Kwon, S.W., Weon, H.Y., & Lakshminarasimhan, C. (2008). Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microbial Ecology, 55, 21-37. Habib, S.H., Kausar, H., & Saud, H.M. (2016). Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. BioMed Research International, 2016. Hahn, L., Sá, E.L.S.D., Osório Filho, B.D., Machado, R G., Damasceno, R.G., & Giongo, A. (2016). Rhizobial Inoculation, Alone or Coinoculated with Azospirillum brasilense, Promotes Growth of Wetland Rice. Revista Brasileira de Ciência do Solo, 40. IRRI, International Rice Research Institute. (2016). Islam, M.Z., Sattar, M.A., Ashrafuzzaman, M., Saud, H.M., & Uddin, M.K. (2012). Improvement of yield potential of rice through combined application of biofertilizer and chemical nitrogen. African Journal of Microbiology Research, 6, 745-750. Jha, M., Chourasia, S., Sinha, S. (2013). Microbial consortium for sustainable rice production. Agroecology and sustainable food systems, 37, 340-362. Ji, S.H., Gururani, M.A., & Chun, S.C. (2014). Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiological research, 169, 83-98. Keyeo, F., Shah, O.N.A., & Amir, H.G. (2011). The effects of nitrogen fixation activity and phytohormone production of diazotroph in promoting growth of rice seedlings. Biotechnology, 10, 267-273. Kimura M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111-120. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., & Higgins, D.G. (2007). Clustal W and Clustal X version 2.0 Bioinformatics, 23, 2947-2948. Lucas, J.A., García-Cristobal, J., Bonilla, A., Ramos, B., & Gutierrez-Manero, J. (2014). Beneficial rhizobacteria from rice rhizosphere confers high protection against biotic and abiotic stress inducing systemic resistance in rice seedlings. Plant Physiology and Biochemistry, 82, 44-53. Martínez Racines, C.P., Cuevas Pérez, F.E., & Medina, L.M. (1989). Evaluación de la calidad culinaria y molinera del arroz. CIAT. [conjunto audiotutorial]. MINAGRI, Ministerio de Agricultura y Riego. (2017). Boletín, Informe del Arroz. Dirección General de Políticas Agrarias. Mwashasha, R.N., Kahangi, E.M., & Hunja, M. (2017). Efficiency of plant growth promoting microorganisms on the growth performance of paddy rice. The 2015 JKUAT Scientific Conference. Agricultural Sciences, Technologies and Global Networking. Nguyen, H.T., Deaker, R., Kennedy, I.R., & Roughley, R.J. (2003). The positive yield response of field-grown rice to inoculation with a multi-strain biofertiliser in the Hanoi area, Vietnam. Symbiosis, 35, 231-245. Nico, M., Ribaudo, C.M., Gori, J.I., Cantore, M L., & Curá, J.A. (2012). Uptake of phosphate and promotion of vegetative growth in glucose-exuding rice plants (Oryza sativa) inoculated with plant growth-promoting bacteria. Applied soil ecology, 61, 190-195. Paul, N., Cruz, P.C., Aguilar, E.A., Badayos, R.B., & Hafele, S. (2013). Evaluation of Biofertilizers in Cultured Rice. Journal of Biofertilizers & Biopesticides, 4, 133. Pérez-Montaño, F., Alías-Villegas, C., Bellogín, R.A., del Cerro, P., Espuny, M.R., Jiménez-Guerrero I., López-Baena, F.J., Ollero F.J., & Cubo, T. (2013). Plant Growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiological Research, 169, 325-336. Ríos-Ruiz, W.F. (2016). Aislamiento de bacterias rizosféricas diazotróficas de cultivares de arroz (Oryza sativa L.) con potencial biotecnológico en la región de San Martín. Disponible en: Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetics trees. Molecular Biology and Evolution, 4, 406-425. Sarathambal, C., Ilamurugu, K., Balachandar, D., Chinnadurai, C., & Gharde, Y. (2015). Characterization and crop production efficiency of diazotrophic isolates from the rhizosphere of semi-arid tropical grasses of India. Applied Soil Ecology, 87, 1-10. Shrestha, B.K., Karki, H.S., Groth, D.E., Jungkhun, N., & Ham, J.H. (2016). Biological control activities of rice-associated Bacillus sp. strains against sheath blight and bacterial panicle blight of rice. PloS one, 11, e0146764. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar ,S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30, 2725-2729 Thakuria, D., Talukdar, N. C., Goswami, C., Hazarika, S., Boro, R. C., & Khan, M. R. (2004). Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Current Science, 86, 978-985. Thompson, J.D., Higgins, D.G., & Gibson, T.J. (1991). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choise. Nucleic Acids Research, 22, 4673-4680. Torres, M.J., Simon, J., Rowley, G., Bedmar, E.J., Richardson, D.J., Gates, A.J., & Delgado, M.J. (2016). Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms. Advances in Microbial Physiology, 68, 353-432. USDA, United States Department Agrary. (2018). Verma, P., Singh, Y.V., Choudhary, A.K., Ahuja, M., & Chaudhary, C. (2017). Root parameters and grain quality of lowland rice as affected by different nutrient management practices and microbial inoculants. Journal of Pharmacognosy and Phytochemistry, 6, 2392-2394. Weisburg, W.G., Barns, S.M., Pelletier, D.A., & Lane, D.J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697-703. Yadav, J., Verma, J.P., Jaiswal, D.K., & Kumar, A. (2014). Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecological engineering, 62, 123-128. Yanni, Y.G., & Dazzo, F.B. (2010). Enhancement of rice production using endophytic strains of Rhizobium leguminosarum bv. trifolii in extensive field inoculation trials within the Egypt Nile delta. Plant and soil, 336, 129-142es_PE
dc.description.abstractEl arroz es el cereal más importante para más del 50% de la población mundial. Debido a que el cultivo de arroz es altamente dependiente de la fertilización química nitrogenada, requiere grandes cantidades para alcanzar el máximo potencial de rendimiento. Dentro de la estrategia de manejo integrado de nutrientes, el diseño y uso de inoculantes a base de consorcios bacterianos nativos es una acertada propuesta. Acorde a ello, el presente estudio, tuvo como objetivo evaluar el efecto de la inoculación individual y en combinación de tres cepas de bacterias promotoras del crecimiento vegetal seleccionadas en invernadero, Burkholderia ubonensis la3c3, Bacillus megaterium la1a4 y Citrobacter bitternis p9a3m, bajo diferentes dosis de fertilización nitrogenada (0, 25, 50, 75 y 100%). El ensayo se realizó en el distrito de Juan Guerra-San Martín, en un ensayo de Parcelas divididas. Los inoculantes evaluados fueron a base de soporte líquido con una población superior a 109 UFC/ml, empleando dos momentos de inoculación, durante el almácigo y al momento del trasplante. Después de 135 días de periodo vegetativo, y cumpliendo el calendario fitosanitario correspondiente al cultivo bajo condiciones de selva alta, se realizó la cosecha del grano y medición de parámetros agronómicos como Rendimiento en grano y paja (t/ha), Longitud de panícula (cm), Número de granos por panícula, Peso de 1000 granos, Número de macollos por golpe, así mismo el parámetro de Calidad molinera como grano entero, quebrado y total. El rendimiento obtenido en el tratamiento fertilizado con N al 75% fue superior al tratamiento recibiendo el 100% de la fertilización nitrogenada. Se concluye que el uso de consorcios bacterianos nativos mejora el rendimiento en grano (13,5%), incrementa la calidad molinera (5,14%) y disminuye la incidencia de añublo bacterial del producto, por lo que constituye una alternativa para mejorar la productividad del cultivo de arroz en la región San Martín.es_PE
dc.description.abstractRice is the most important cereal for more than 50% of the world's population. Because rice cultivation is highly dependent on nitrogenous chemical fertilization, it requires large quantities to achieve maximum yield potential. Within the strategy of integrated nutrient management, the design and use of inoculants based on native bacterial consortiums is a successful proposal. Accordingly, the present study aimed to evaluate the effect of individual inoculation and in combination of three strains of plant growth promoting bacteria selected in greenhouse, Burkholderia ubonensis la3c3, Bacillus megaterium la1a4 and Citrobacter bitternis p9a3m, under different doses of fertilization nitrogenated (0, 25, 50, 75 and 100%). The experiment was conducted in the district of Juan Guerra-San Martín, in a trial of divided plots. The evaluated inoculants were based on liquid support with a population greater than 109 CFU / ml, using two inoculation moments, during nursery and at the time of transplant. After 135 days of vegetative period, and fulfilling the phytosanitary calendar corresponding to the crop under conditions of high forest, the harvest of the grain was carried out and measurement of agronomic parameters such as yield in grain and straw (t / ha), Panicle length (cm), Number of grains per panicle, Weight of 1000 grains, Number of tillers per stroke, likewise the milling quality parameter as whole, broken and total grain. The yield obtained in the treatment fertilized with N at 75% was superior to the treatment receiving 100% of the nitrogen fertilization. It is concluded that the use of native bacterial consortiums improves the yield in grain (13.5%), increases the milling quality (5.14%) and decreases the incidence of bacterial blight of the product, so it constitutes an alternative to improve the productivity of rice cultivation in the San Martín region.es_PE
dc.description.uriTrabajo de investigaciónes_PE
dc.publisherUniversidad Nacional de San Martín - Tarapotoes_PE
dc.sourceUniversidad Nacional de San Martín - Tarapotoes_PE
dc.sourceRepositorio de Tesis - UNSM - Tes_PE
dc.subjectBiofertilizante, PGPRs, Fertilización nitrogenada, Productividad de arroz.es_PE
dc.subjectBiofertilizer, PGPRs, Nitrogen fertilization, Rice productivity.es_PE
dc.titleEfecto de la aplicación de biofertilizantes en la productividad del cultivo de arroz (Oryza sativa L.) bajo condiciones de campo en la región San Martínes_PE
dc.typeinfo:eu-repo/semantics/reportes_PE Nacional de San Martín-Tarapoto.Facultad de Ciencias Agrariases_PE

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess

Indexado por: