UNIVERSIDAD NACIONAL DE SAN MARTÍN

FACULTAD DE INGENIERÍA AGROINDUSTRIAL DEPARTAMENTO ACADÉMICO DE INGENIERÍA AGROINDUSTRIAL

TESIS

DETERMINACIÓN DE PARÁMETROS TECNOLÓGICOS ÓPTIMOS PARA LA OBTENCIÓN DE UN LICOR DESTILADO DE UVA (Vitis labrusca), MACERADO EN MADERA ESTORAQUE

(Myroxylom balsamun)

Para Optar el Título Profesional de:

INGENIERO AGROINDUSTRIAL

Presentado por el Bachiller:

DAVID FACHIN RUIZ

Tarapoto – Perú 2013

UNIVERSIDAD NACIONAL DE SAN MARTÍN

FACULTAD DE INGENIERÍA AGROINDUSTRIAL

DEPARTAMENTO ACADÉMICO DE INGENIERÍA AGROINDUSTRIAL

TESIS

DETERMINACIÓN DE PARÁMETROS TECNOLÓGICOS ÓPTIMOS
PARA LA OBTENCIÓN DE UN LICOR DESTILADO DE UVA,
MACERADO CON MADERA ESTORAQUE

Para Optar el Título Profesional de:

INGENIERO AGROINDUSTRIAL

Presentado por el Bachiller:

DAVID FACHIN RUIZ

Sustentado y Aprobado ante el Honorable Jurado

Dr. OSCAR W. MENDIETA TABOADA

Presidente

Ing. M.Sc. EPIFANIO MARTINEZ MENA

Miembro

ING. NELSON GARCÍA GARAY

Secretario

Or. MARHLUZ MEDINA VIVANCO

Asesor

AGRADECIMIENTOS

- ✓ A la ingeniera Liley Vela Saavedra quien le debo una eterna gratitud por el apoyo económico para el desarrollo de la tesis.
- ✓ A la Dra. Mari Luz Medina Vivanco, por su apoyo brindado incondicionalmente en el asesoramiento durante la realización de este trabajo de investigación.
- ✓ De forma especial al Sr. Guido Saavedra y Sr. Walter Lozano por todas las facilidades brindadas para el desarrollo de la parte práctica y analítica de la tesis.
- ✓ Al Sr. Porfirio por las facilidades prestadas en la información para en el desarrollo del trabajo de investigación.
- ✓ A compañeros de toda la vida Carlos, Carmelino, Max Xavier, Cindy por su apoyo y su amistad incondicional.

DEDICATORIA.

✓ Al todopoderoso que de una u otra forma se encuentra presente en cada paso de mi vida que he dado y cuida de mí y de los seres que se encuentran a mí alrededor.

> ✓ De forma muy especial a mis queridos padres David Fachin Souza y Flor De María Ruiz Rodríguez por el apoyo incondicional valido para la formación como persona y profesional.

✓ A mis hermanos Jorge y Grecia, con inmensa gratitud por su constante e invalorable apoyo, comprensión y sobre todo su cariño eterno.

INDICE

INDICE	Pág.
RESUMEN	1
ABSTRACT	2
I. INTRODUCCIÓN	3
1 OBJETIVOS	4
1.1.1. Generales	4
1.1.2. Específicos	4
II. REVISIÓN DE LITERATURA	5
2. GENERALIDADES SOBRE LA MATERIA PRIMA	5
2.1. La vid	5
2.2. La uva	6
2.3. Estoraque	9
2.4. Fabricación del pisco	11
2.4.1. Microorganismos participantes	13
2.4.2. Principio de destilación.	13
III. MATERIALES Y MÉTODO	16
3.1. LUGAR DE EJECUCIÓN	16
3.2. MATERIA PRIMA	16
3.3. EQUIPOS Y MATERIALES DE LABORATORIO	16
3.3.1. Equipos	16
3.3.2. Materiales	17
3.4. METODOLOGÍA EXPERIMENTAL	18
3.4.1. Recepción y pesado de materia prima	19
3.4.2. Despalillado	19
3.4.3 Estruiado	10

3.4.4. Acondicionamiento del mosto	19
3.4.5. Fermentación	19
3.4.6. Destilación	20
3.4.7. Tratamiento de la madera	20
3.4.8. Maceración	20
3.4.9. Filtrado	20
3.4.10. Dilución	21
3.4.11. Añejamiento	21
3.5. Diseño experimental	23
3.6. Métodos de control.	23
IV. RESULTADOS Y DIFUSIÓN	24
4.1. Características de materia prima	24
4.2. Características del destilado de uva	25
4.3. Secado de la madera	26
4.4. Prueba durante el añejamiento del licor con estoraque	27
4.4.1. Evaluación sensorial a los 3 meses de añejamiento	27
4.4.2. Evaluación sensorial a los 6 meses de añejamiento	36
4.4.3. Evaluación sensorial a los 12 meses de añejamiento	43
4.5. Balance de materiales para la obtención del licor con estoraque	50
4.6. Análisis Físico Químico del mejor licor con estoraque	51
V. CONCLUSIONES.	52
VI. RECOMENDACIONES	53
VII. BIBLIOGRAFÍA	54
VIII. ANEXOS	55

INDICE DE CUADROS

N°	TÍTULOS	Pág.
1.	Producción histórica de la uva Borgoña Negra o Isabella en la	6
	Región San Martín (1989 – 2012).	
2.	Características físicas y biométricas de la uva variedad Borgoña	8
•	Negra.	
3.	Propiedades físicas del Estoraque (Myroxylon balsamum)	10
4.	Diseño experimental para el estudio	22
5.	Características físico químicas de la uva variedad Borgoña Negra	24
	después del estrujado.	
6.	Características físicas y químicas de la madera Estoraque	25
7.	Características físicas y químicas del destilado de uva	25
8.	Comparación de los resultados fisicoquímicos obtenidos del licor	51
	del estoraque con las Normas Técnicas del Brandy y Pisco.	
9.	ANVA para el atributo de color del licor con Estoraque	57
10.	ANVA para el atributo de olor del licor con Estoraque	57
11.	ANVA para el atributo de sabor del licor con Estoraque	58
12.	ANVA para el atributo de color del licor con Estoraque	60
13.	ANVA para el atributo de olor del licor con Estoraque	60
14.	ANVA para el atributo de sabor del licor con Estoraque	61
15.	ANVA para el atributo de color del licor con Estoraque	63
16.	ANVA para el atributo de olor del licor con Estoraque	63
17.	ANVA para el atributo de sabor del licor con Estoraque	64

INDICE DE FIGURAS

N٥	TÍTULOS	Pág
1.	Flujo experimental para la obtención de un licor de uva, macerado con	18
	madera Estoraque.	
2.	Evaluación del color en función de la dilución y la masa de viruta	28
3.	Evaluación del color en función de la dilución y el tiempo de secado	28
4.	Evaluación del color en función de la dilución y la temperatura de secado	28
5.	Evaluación del color en función de la masa de viruta y el tiempo de secado	28
6.	Evaluación del color en función del tiempo y temperatura de secado	29
7.	Evaluación del calor en función de la masa y la temperatura de secado	29
8.	Evaluación del olor en función de la dilución y la masa de viruta	31
9.	Evaluación del olor en función de la dilución y el tiempo de secado	31
10.	Evaluación del olor en función de la dilución y la temperatura de secado	31
11.	Evaluación del olor en función de la masa de viruta y el tiempo de secado	31
12.	Evaluación del olor en función del tiempo y temperatura de secado	32
13.	Evaluación del olor en función de la masa y temperatura de secado	32
14.	Evaluación del sabor en función de la dilución y la masa de viruta	34
15.	Evaluación del sabor en función de la dilución y el tiempo de secado	34
16.	Evaluación del sabor en función de la dilución y la temperatura de secado	34
17.	Evaluación del sabor en función de la masa de viruta y el tiempo de secado.	34 ,
18.	Evaluación del sabor en función del tiempo y temperatura de secado.	35
19.	Evaluación del sabor en función de la masa y la temperatura de secado.	35
20.	Evaluación del color en función de la dilución y la masa de viruta	37
21	Evaluación del color en función de la dilución y el tiempo de secado	37

22.	Evaluación del color en función de la dilución y la temperatura de secado.	37
23.	Evaluación del color en función de la masa de viruta y el tiempo de secado.	37
24.	Evaluación del color en función del tiempo y temperatura de secado	38
25.	Evaluación del color en función de la masa y la temperatura del secado.	38
26.	Evaluación del olor en función de la dilución y la masa de viruta	39
27.	Evaluación del olor en función de la dilución y el tiempo de secado.	39
28.	Evaluación del olor en función de la dilución y el temperatura de secado.	39
29.	Evaluación del olor en función de la masa de viruta y el tiempo de secado.	39
30.	Evaluación del olor en función del tiempo y temperatura de secado	40
31.	Evaluación del olor en función de la masa y la temperatura de secado.	40
32.	Evaluación del sabor en función de la dilución y la masa de viruta	41
33.	Evaluación del sabor en función de la dilución y el tiempo de secado.	41
34.	Evaluación del sabor en función de la dilución y la temperatura de secado.	41
35.	Evaluación del sabor en función de la masa de viruta y el tiempo de secado.	41
36.	Evaluación del sabor en función del tiempo y temperatura de secado	42
37.	Evaluación del sabor en función de la masa y la temperatura de secado	42
38.	Evaluación del color en función de la dilución y la masa de viruta	44
39.	Evaluación del color en función de la dilución y el tiempo de secado	44
40.	Evaluación del color en función de la dilución y la temperatura de secado.	44
41.	Evaluación del color en función de la masa de viruta y el tiempo de secado.	44
42.	Evaluación del color en función del tiempo y temperatura de secado	45 [′]
43.	Evaluación del color en función de la masa y la temperatura de secado	45
44.	Evaluación del olor en función de la dilución y la masa de viruta	46
45.	Evaluación del olor en función de la dilución y el tiempo de secado.	46
46	Evaluación del olor en función de la dilución y la temperatura de secado	46

47.	Evaluación del olor en función de la masa de viruta y el tiempo de secado.	46	
48.	Evaluación del olor en función del tiempo y temperatura de secado	47	
49.	Evaluación del olor en función de la masa y la temperatura de secado	47	
50.	Evaluación del sabor en función de la dilución y la masa de viruta	48	
51.	Evaluación del sabor en función de la dilución y el tiempo de secado	48	
52.	Evaluación del sabor en función de la dilución y la temperatura de secado.	48	. 1
53.	Evaluación del sabor en función de la masa de viruta y el tiempo de secado.	48	
54.	Evaluación del sabor en función del tiempo y temperatura de secado	49	
55.	Evaluación del sabor en función de la masa y la temperatura de secado	49	
56.	Flujograma y Balance de Materiales	50	•

RESUMEN

El presente trabajo tuvo como objetivo obtener un licor destilado de uva (vitis labrusca) macerado con madera estoraque (Myroxylon balsamum). La uva variedad Borgoña negra, cultivada en los distritos de San Antonio de Cumbaza y Tarapoto en la provincia de San Martín, es una variedad que posee bajo contenido de sólidos solubles, elevada acidez, buen aroma y color. La madera estoraque que se extrae de la provincia de Juanjui, posee buen color y aroma agradable característico, similar al roble. El estudio comprendió 3 etapas, en la primera etapa se buscó determinar las mejores condiciones de tratamiento de la madera, para lo que se evaluó la temperatura (80 - 160°C) y el tiempo de secado (1- 3.horas).

La segunda etapa consistió en determinar las mejores condiciones de extracción de la madera, donde la mejor relación de masa de la madera y licor de uva a 58° grados alcohólicos fueron (30, 50, 70 y 90 g/L), con la finalidad de extraer las sustancias qué dan sabor, color y olor al licor y se dejo macerar por 30 días.

La tercera etapa comprendió la dilución del extracto obtenido en la segunda etapa, con destilado de uva con 40° alcohólicos, las diluciones fueron 10, 15, 20, 25 y 30 % (v/v). Durante el tiempo de añejamiento del licor se hicieron pruebas sensoriales, mediante prueba afectiva (método de escala hedónica de 5 puntos), se utilizó un diseño completamente aleatorizado con arreglo factorial, 2 niveles, 4 factores con 8 puntos axiales, mas 5 puntos centrales, haciendo un total de 29 experimentos.

Los resultados obtenidos fueron, para el secado de madera a 120°C durante 2 horas, con 50g/L de extracto de viruta y 20% v/v de dilución, analizándose las características físicas - química del producto final.

ABSTRACT

This study aimed to obtain a liquor distilled from grape (Vitis labrusca) macerated wood storax (Myroxylon balsamum). Black Burgundy grape variety, grown in the districts of San Antonio de Cumbaza and Tarapoto in San Martin province, is a variety that has low soluble solids content, high acidity, good flavor and color. Storax wood extracted from the province of Juanjui, has good color and pleasant aroma characteristic, similar to oak. The study comprised 3 stages, in the first stage is sought to determine the best conditions of treatment of wood, which was evaluated for the temperature (80 - 160 ° C) and the drying time (1 - 3.horas).

The second step was to determine the best conditions of extraction of timber, where the best mass ratio of wood and grape liquor at 58 ° were alcoholic (30, 50, 70 and 90 g / L), in order removing substances which give flavor, color and odor of liquor and allowed to macerate for 30 days.

The third stage involved the dilution of the extract obtained in the second stage, grape distillate 40 ° alcoholics, dilutions were 10, 15, 20, 25 and 30% (v / v). During the aging time the liquor is sensory tested by affective test (method of hedonic scale of 5 points); we used a completely randomized design with factorial arrangement, 2 levels, 4 factors with 8 axial points, 5 points more central making a total of 29 experiments.

The results were, for drying timber at 120 $^{\circ}$ C for 2 hours with 50g / L of extract chip and 20% v / v dilution, analyzing the physical characteristics - chemistry of the final product.

I. INTRODUCCIÓN

En el Perú, existe una flora muy variada, dentro la cual podemos encontrar numerosas variedades de árboles forestales, que por sus características físicas y químicas resultan de fácil explotación y de consumo económico, pero no todas son aprovechadas al máximo debido que en la industrialización no son explotadas integralmente, pudiendo ser utilizadas en licores, macerados, extracción de principios activos, aceite esencial, etc.

Entre las especies que se puede aprovechar para la fabricación de licores y macerados en la región San Martin, ya que este tipo de licores son muy comunes y populares en la región, está el estoraque (*Myroxylon balsamum*) que es una madera muy conocido y tiene una gran demanda internacional que es utilizada para la fabricación de parquet y muy poco utilizado en la industria alimentaria ya que posee principios activos beneficios para la salud, y que deberían ser mas utilizados en la industria de licores.

La uva borgoña negra (*Vitis labrusca*) se encuentra en los sectores correspondiente a San Antonio de Cumbaza, provincia y región de San Martin, su consumo es de forma natural y un gran porcentaje de su producción se utiliza para la producción de distintos licores en la región.

El presente trabajo trata sobre la elaboración de parámetros para la elaboración de un licor a base de destilado de uva macerado con madera estoraque, donde se realizaron distintos tratamientos durante el secado la madera, a la masa de viruta y las diferentes diluciones que tuvo el licor, durante 1 año de añejamiento.

1.1 OBJETIVOS

1.1.1 - General

✓ Obtener parámetros tecnológicos para la elaboración de un licor destilado de uva, macerado con extracto madera estoraque, de alto valor agregado y con preferencia en el mercado.

1.1.2. - Específicos.

- ✓ Determinar las condiciones de secado adecuadas de la madera estoraque (*Myroxylon balsamum*) para la obtención del extracto.
- Determinar la relación adecuada entre madera y destilado de uva, de 58 grados alcohólicos, (p/V) para la obtención del extracto.
- ✓ Determinar la relación entre extracto y destilado de uva de 40 grados alcohólicos (V/V) para el añejamiento.
- ✓ Evaluar sensorialmente el destilado de uva con extracto de estoraque, durante el añejamiento.
- ✓ Evaluar fisicoquímicamente al mejor licor obtenido en la evaluación sensorial.

II. REVISIÓN BIBLIOGRÁFICA

2.1 LA VID

La vid es un arbusto constituido por raíces, tronco, sarmientos, hojas, flores y fruto. A través de la raíces se sustenta la planta, mediante la absorción de la humedad y las sales minerales necesarias, el tronco y los sarmientos son vehículos de transmisión por los que circula el agua con componentes minerales. La hoja con sus múltiples funciones es el órgano más importante de la vid. Es en ellas donde, a partir del oxigeno y el agua, se forma las moléculas de ácidos, azucares, etc. que se van acumular en el grano de la uva condicionando su sabor (Peñin, 1996).

Taxonomía de la vid

La botánica sistemática sitúa a la variedad de vid, Borgoña negra, en la más importante agrupación del reino vegetal (Hidalgo, 1993):

Tipo : Fanerógama

Sub – tipo : Angiosperma

Clase : Dicotiledóneas

Sub Clase : Dialipétalas

Orden : Ramnales

Familia : Vitaceae

Genero : Vitis

Especie : labrusca

En el cuadro 1, puede apreciarse el comportamiento histórico de la uva variedad Borgoña negra o isabella (*Vitis labrusca*), en cuanto a superficies cultivadas y volumen total de producción, para los años 1989 al 2009.

CUADRO Nº 1: Producción histórica de la uva variedad Borgoña negra o Isabella en la región San Martin. (1993 – 2011).

AÑOS	AREA CULTIVADA (ha)	PRODUCCION(TM).
1993	80	480
1994	85	510
1995	85	510
1996	100	600
1997	150	850
1998	ND	ND
1999	121.6	689
1998	120.5	683
1999	999 121.6	
2000	130	720
2001	127	841.5
2002	108.25	839
2003	109.25	/ 781
2004	117.25	826
2005	122	984
2006	138	1127
2007	148	1359
2008	212	1689
2009	212	1742
2010	210	1713
2011	210	1692

FUENTE: Ministerio de Agricultura – Región Agraria XIII, oficina Estadística Agraria, Tarapoto – Perú (2011).

2.2. LA UVA

Es un fruto proveniente de la cosecha de la planta llamada Vid, cuyo nombre científico es *Vitis labrusca*, perteneciente a la familia de las Vitáceas. La uva se obtiene en racimos siendo el fruto de forma esférica; en estado maduro presenta un color rojo azul a púrpura y es la variedad borgoña negra o Isabella la más difundida y empleada en la industrialización en la región (Correa y Bernal, 1992). Algunas características físicas y química de la uva borgoña negra.

Materia prima

Uva

Variedad

Borgoña negra

Tamaño racimo

Mediano a chico

Forma racimo

Cónica

Color racimo

Negro violeta

Tamaño grano

Mediano

Forma grano

Esferoide

Tamaño promedio

1.5 cm de diámetro

Peso cáscara y pepas

1.155 gr. (33%)

Peso pulpa

2.345 gr. (77%)

Peso total

3.5 gr.

°Brix

12-15

Ηα

3.0

Densidad de pulpa

1.034 gr. /cm³

Ácido ascórbico

4.6 mg. /100g de muestra

Índice de madurez

8.89.

(Castañeda, 1992)

La *Vitis labrusca*, es una especie poco tolerante a la filoxera, sin agallas en las hojas, escasamente atacada por el mildium, resistente al oidio, sensible a la podredumbre negra; resiste bien a la podredumbre gris, lo que es ventajoso en climas tropicales, y de arraigo difícil. Su hábitat es en bosques húmedos, está muy difundida con sus variedades Concord e Isabella (Borgoña negra), para uva de mesa y vino. La Concord es cultivada en los Estados de New York y Michigan de los Estados Unidos; en Brasil, Colombia y Perú, como frutilla en Uruguay, como uva Chindre en Argentina, como uva Frógala en Italia Austria, Rumania, como Gros Framboise en Suiza, India y con diversas sinónimos en Zaire, Madagascar, etc. (Hidalgo, 1993).

La uva variedad Borgoña negra (*Vitis labrusca*), es una variedad poco estudiada, comparada con las variedades de *Vitis vinífera*. En términos porcentuales, el cuadro 2 presenta las características físicas de la uva variedad Borgoña Negra (García, 1998).

CUADRO N°2: Características Físicas y Biométricas de la uva variedad Borgoña negra.

RACIMO	Peso promedio	: 108.38 g
	• Raspón o e	escobajo : 5.0%
	Granos	: 95.0%
GRANO	Diámetro promedi	o : 1.88 cm
	Peso promedio	: 4.42 g
	• Semillas	: 3.023%
	 Hollejo 	: 14.36%
	• Pulpa	: 82.41%
	Rendimiento Most	to :61%

Fuente: García, 1998

2.3. ESTORAQUE (*Myroxylon balsamum* Harms)

La familia del estoraque comprende doce géneros, con unas 180 especies en las regiones tropicales.

En el Perú se encuentra distribuida en los departamentos de Loreto, San Martín, Madre de Dios, Huánuco y Ucayali. El Estoraque se encuentra en el bosque seco tropical y bosque húmedo tropical, que cuya clasificación taxonómica se presenta:

Nombre Internacional : Bálsamo

Nombre Científico : Myroxylon balsamum Harms

Nombre Común : Estoraque, Quina quina

Familia : Fabaceae

DESCRIPCIÓN DE LA MADERA

Árbol que alcanza hasta 30 m de altura y 0.50 m de diámetro, con una posición inclinada, muy característica, por lo cual se reconoce. Tronco recto y cilíndrico, sin bambas. La corteza externa es de color anaranjado, textura arenosa, reventadora, sin exfoliación del ritidoma. La corteza interna es de color amarillo pálido, transparente, que se desprende en láminas grandes y exuda el bálsamo de Tolú de mucha fragancia. Las hojas alternas, compuestas, foliolos alternos con puntos y rayitas traslucidas. Las flores son de color blanco cremosas y dispuestas en racimos axilares. El fruto es una legumbre samaroide que tiene una sola semilla (Arostegui, 1982).

La madera de estoraque es muy difícil de trabajar debido a sus propiedades físicas como lo presenta el cuadro N°3, es abrasiva por ello se debe utilizar herramientas con filos reforzados (Lastra, 1987).

PROPIEDADES FISICAS

CUADRO. Nº 3: Propiedades físicas del estoraque (Myroxylon balsamum)

Densidad	Verde	Seca al aire	Anhidra	Básica
(gr /cm³)	1.01	0.95	0.93	0.81
Contracción	Tangencial	Radial	Volumétrica	T/R
Normal (%)	1.84	1.27	3.24	1.44
Contracción Total (%)	7.20	5.50	12.82	1.30

Fuente: Lastra, 1987

CARACTERISTICAS DE LA TROZA

Diámetro

: 0.38 - 0.51 m

Forma

: Cilíndrica

Defectos

: Curvaturas y pocos nudos

Conservación

: Albura muy susceptible a ataque biológica

Aserrío Y Secado : El aserrío es moderadamente difícil y lento sobretodo por su alta dureza y la presencia de tensiones internas que produce un desafilado de herramientas medio. EL comportamiento al clavado es difícil, se recomienda la perforación previa. El secado natural es lento, pero de buen comportamiento. En secado artificial se recomienda

un programa suave.

Durabilidad

: Presenta una buena resistencia al ataque de hongos, termitas e insectos de madera seca y no requiere de preservación. (Junta de Acuerdo de Cartagena, 1981)

PROPIEDADES QUÍMICAS

Resina (25-30%): cinameína (60%), formada principalmente por cinamato de bencilo y, entre 6 – 8% de ácidos benzoico junto con ésteres (cinamato de cinamilo o estiracina, cinamato y benzoato de perurresinotanol), trazas de aceite esencial. (Bravo, 2005)

2.4. LA FABRICACIÓN PISCO.

El vino se forma por la fermentación del zumo de la uva. La realización de este proceso se remonta a las culturas más primitivas. Pero solo el tiempo mas reciente ha sido posible orientar la fermentación en la dirección deseada gracias al conocimiento de los microorganismos que intervienen en ella y de las transformaciones que se lleva a cabo (Jagnow, 1991).

La vinificación es el conjunto de operaciones puestas en práctica para transformar el mosto en vino. Vinificar racionalmente es aplicar en condiciones dadas, una técnica escogida después del conjunto de condiciones adquiridos sobre los mecanismos y los factores de los grandes fenómenos de la vinificación (Peynaud, 1996).

Cuando las uvas de una variedad propia para la fabricación de vino han alcanzado una concentración de azúcar suficiente, se vendimian. La concentración de azúcar llega de 15 a 25%, según la variedad y el grado de madurez de las uvas; a continuación se despalillan y estrujan a máquina, tratándolas con dióxido de azufre (75 – 200 ppm) o meta bisulfito potásico en cantidades equivalentes, para inhibir así los competidores de la levadura del vino (Frazier, 1798).

Luego, se añade al mosto de 2 a 5 % de levadura especial, una raza de *Saccharomyces ellipsoideus*, en lugar de confiar en las levaduras naturalmente presentes en las uvas. Es muy importante mantener la temperatura dentro de los limites óptimos (24 a 27°C para vinos tintos) durante la fermentación activa, que dura 3 a 5 días; en vinos blancos una temperatura de 10 a 21.1°C durante 7 a 14 días (Frazier, 1798)

Las características de los vinos tintos es su obtención por fermentación en presencia de las partes sólidas (principalmente los hollejos, secundariamente las pepitas, más raramente también el raspón), (De Rosa, 1988).

Los depósitos de fermentación se llenan con masa estrujada y despalillada aproximadamente en los 4/5 o 5/6 de su capacidad, debido a que durante la fermentación la formación de CO₂ subirá notablemente el sombrero de los orujos flotantes, los cuales de no ser así corren el riesgo de salirse de un depósito lleno (De Rosa, 1988).

El dejar el espacio vacio en los depósitos de fermentación, es una practica de gran valor, es decir que un sombrero flotante es indispensable que sobre la masa en fermentación se estratifique CO₂, el cual proporciona una utilísima protección de la misma masa contra los defectos nefastos del oxigeno atmosférico, responsable no solo de desagradables oxidaciones, sino también el desarrollo de bacterias patógenas, en particular la bacteria del picado (De Rosa, 1988).

Cuando la fermentación primaria esta suficientemente avanzada, se separa el mosto fermentado del orujo (descube) y se coloca en un tanque en el que se almacena bajo una presión reducida de dióxido de carbono, para que sufra una segunda fermentación. Durante esta fermentación se transforma el acido málico en acido láctico por intervención de bacterias particulares, con la consiguiente disminución de la acidez, por lo que se le denomina fermentación maloláctica (Peynaud, 1996).

Organolépticamente los vinos tintos, mejoran por la fermentación del acido málico por láctico, puesto que se hacen más suaves, más maduros (Peynaud, 1996).

2.4.1. Microorganismos Participantes

Sobre la uva ya recolectada se desarrolla siempre la levadura del vino Saccharomyces cerevisace. Por tanto, la mayoría de las veces sus células están en cantidad suficiente en los mostos, de manera que la fermentación se inicia espontáneamente, no siendo necesaria, por lo general, una inoculación posterior. Saccharomyces cerevisace es una especie de los Endomycetaceae(Ascomycetes) que agrupa distintas subespecies y muchas razas cultivadas, a la que pertenece también la mayoría de levaduras de las empleadas en panadería y en la fabricación de cerveza. El desarrollo de la levadura para la fermentación sigue un esquema común. Las células diploides se multiplican por gemación y germinación. Ocasionalmente, una célula sufre una división reduccional, como consecuencia de la cual se forma en su interior cuatro ascosporas haploides que se liberan al medio. Se multiplican de igual manera y permiten, por su fusión de dos a dos para formar células diploides, una nueva combinación de genes (Jagnow, 1991).

Las cepas de Saccharomyces cereviseace se diferencian por su actividad fermentadora y por sus límites de tolerancia físico químicos, muy importantes en la práctica. Así por ejemplo, las cepas de "fermentación alta" producen a 12- 20 °C un 18-20% (en volumen).

Puede continuar la fermentación aun en vinos ya terminados con concentraciones de alcohol de 8-12% (en volumen). Además, determinadas cepas de "levaduras sulfiticas" pueden transformar incluso mostos fuertemente sulfitados. Las levaduras del vino tinto, también pueden fermentar mostos con un elevado contenido de taninos procedentes de los hollejos de las uvas negras (Jagnow, 1991)

2.4.2. Principio de destilación

El principio de la destilación se basa en las diferencias que existen entre los puntos de fusión del agua (100°C) y el alcohol (78.3°C). Si un recipiente que contiene alcohol es calentado a una temperatura que supera los 78.3°C, pero sin alcanzar los 100°C, el alcohol se vaporizará

y separará del líquido original, para luego juntarlo y volver a condensarlo en un líquido de mayor fuerza alcohólica (Verapinto, 2009).

Resultados similares pero de separación más difícil pueden lograrse invirtiendo el proceso. Esto implicaría enfriar el alcohol contenido en un líquido, comenzando a congelar el agua cuando se alcancen los 0°C y separar el alcohol de la solución. (El punto de congelación del alcohol es -114°C). Así, de comprender el proceso de destilaçión se deduce que los mayores componentes de las bebidas destiladas son el alcohol etílico (C₂H₅OH) y el agua (Verapinto, 2009).

El líquido obtenido tiene diferentes características de acuerdo a cada uno de los momentos de la destilación, que son tres. Entre uno y otro se lleva a cabo el "corte" que permite obtener el pisco. De la pericia y talento con que el productor haga el corte depende muchas veces la calidad final del pisco.

CABEZA: Primera destilación que sale del alambique. Contiene aldehídos y cetonas, elementos tóxicos que deben ser retirados.

CUERPO: También llamado "corazón". Es el pisco propiamente dicho. La riqueza alcohólica puede llegar hasta los 45°, permitiendo integrar elementos característicos de cada tipo de uva.

COLA: La parte final del destilado. Contiene ésteres y agua. Son separados para evitar que el pisco pierda sabor y aroma (Verapinto, 2009)

- Para la destilación se utilizan los siguientes equipos:
 - a. Falca.- Está provista de una paila, un cañón recto que está sumergido en una alberca (depósito de agua fría), culminando en una salida donde se recibe el pisco

- **b. Alambiques simples.-** Consisten en una caldera, un capitel, cuello de cisne y el conjunto de refrigeración (serpentín y depósito de agua fría).
- c. Alambique con calienta vinos.- El alambique que calienta vinos, además de contar con su capitel, cuello de cisne y serpentín, también cuenta con un calienta vinos (Verapinto, 2009).

III. MATERIALES Y MÉTODOS

3.1. LUGAR DE EJECUCIÓN

El presente trabajo de investigación se desarrolló en el laboratorio de Tecnología de Productos Agroindustriales No Alimentos de la facultad de Ingeniería Agroindustrial de La Universidad Nacional de San Martin, ubicado en la Ciudad Universitaria del Distrito de Morales y en la Empresa Mundo Agroindustrial EIRL, ubicado en el Distrito de Tarapoto, Provincia de San Martin, Departamento San Martin (Perú), entre los meses de Agosto (2009) y Agosto (2011)

3.2. MATERIA PRIMA

Para el experimento se utilizó uva borgoña (*Vitis labrusca*) obtenida del distrito de San Antonio de Cumbaza y madera estoraque (*Myroxylon balsamum*) obtenida la provincia de Juanjuí.

3.3. EQUIPOS Y MATERIALES UTILIZADOS

3.3.1. Equipos

- Balanza digital DENVER INSTRUMENT COMPANY, modelo APX-200, capacidad máxima 200g. y exactitud de 0.1 mg.
- Botellas de vidrio
- Refractómetro
- Termómetro
- Equipo de fermentación, envase de plástico de 10 litros, acondicionado para el caso.
- Estufa MERMMERT, Modelo 600, tipo V30, temperatura máxima de 220°C
- Alcoholímetro Gay lussac, graduado a temperatura de 15 °C.
- Destilador. Indicar algunas características

3.3.2. MATERIALES DE LABORATORIO

- Probetas de 100, 250 y 500 ml.
- Pipetas
- Papel filtro
- Vasos de precipitación
- Embudo de vidrio
- Pizetas
- Cuchillo de acero inoxidable

3.4. DESCRIPCIÓN DEL FLUJO EXPERIMENTAL PARA LA OBTENCIÓN DE UN LICOR DESTILADO DE UVA, MACERADO CON MADERA ESTORAQUE.

En la figura 1, se presenta el diagrama de flujo experimental para la obtención de un licor destilado de uva, macerado con madera estoraque.

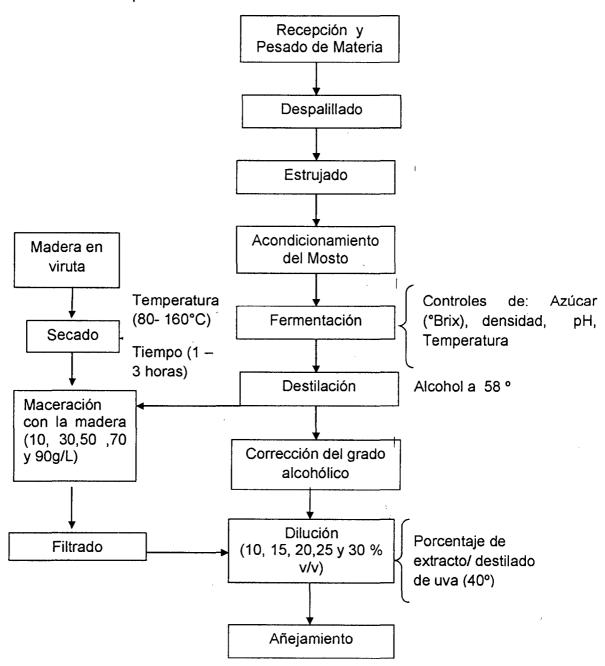


FIGURA 1: Descripción del flujo experimental para la obtención de un licor destilado de uva, macerado con madera estoraque.

Descripción del proceso:

3.4.1. RECEPCIÓN Y PESADO DE MATERIA PRIMA

La uva, en buen estado de maduración se pesó para controlar el rendimiento del proceso.

3.4.2. DESPALILLADO

Se eliminó el escobajo, para dejar solamente los granos.

3.4.3. ESTRUJADO

Esta operación consistió en desintegrar los granos de uva en forma manual, con esto se logró extraer el líquido azucarado y otras sustancias contenidas en los granos. Un buen estrujado permite disolver bien la materia colorante y los taninos de la piel de la uva.

3.4.4. ACONDICIONAMIENTO DEL MOSTO

Esta operación consistió en corregir el grado de azúcar del mosto estrujado hasta 220 g/L (22°Brix). Para esto en primer lugar se midió el contenido de azúcar del mosto estrujado utilizando un brixómetro o un mostímetro.

3.4.5. FERMENTACIÓN

Inició cuando se colocó el mosto estrujado y acondicionado en el depósito de fermentación.

La fermentación se inició a las 6 horas de terminado el acondicionamiento, este es un proceso biológico mediante el cual los azúcares del mosto son transformados en alcohol y anhídrido carbónico como productos principales. Al tercer día se realizó la separación de los hollejos, se filtró bien el mosto y se continuó con la fermentación, hasta 6 °Brix.

El proceso de fermentación duró 10 días. Durante todo el proceso se realizaron los controles de: Azúcar (°Brix), densidad, pH, Temperatura.

3.4.6. DESTILACIÓN

Se filtró el mosto fermentado, seguidamente se cargó al alambique y se suministró calor. El calor fue alto, para que el mosto tome su temperatura adecuada. En el momento que cae el primer chorro del destilado, sé baja la temperatura hasta 78 °C, a partir de allí la destilación tiene que realizarse a fuego lento, ya que el etanol sé evapora a 78 °C de temperatura. Durante el de destilado realiza proceso se tres separaciones: cabeza, cuerpo y cola. La cabeza se descarta, la cola se redestila y el cuerpo es el alcohol etílico puro, que es para el consumo.

3.4.7. CORRECCIÓN DEL GRADO ALCOHÓLICO

Corregir el grado alcohólico obtenido en la destilación, hasta 40° alcohólicos.

3.4.8. TRATAMIENTO DE LA MADERA

La madera en viruta se secó a 80, 100, 120, 140 y 160 °C, durante 1, 1.5, 2, 2.5 y 3 horas.

3.4.9. MACERACIÓN

Este proceso se desarrolló en envases de vidrio, mezclando madera de Estoraque (*Myroxylon balsamum Harms*) con 10, 30, 50,70 y 90 g/L de madera y destilado de uva de 40° Grados Alcohólicos, durante 30 días.

3.4.10. FILTRADO

Sé realizó con la finalidad de eliminar partículas sobrantes, con telas filtrantes.

3.4.11. DILUCIÓN

Se hizo la mezcla con el extracto de la maceración y el destilado de uva a 40° alcohólicos, en diferentes diluciones 10,15, 20, 25, 30% v/v.

3.4.12. AÑEJAMIENTO

El añejamiento del licor se dio por un tiempo de 12 meses. Se realizaron pruebas sensoriales a las 3, 6 y 12 meses.

3.5. Diseño experimental

Se utilizó un diseño completamente aleatorizado con arreglo factorial, 2⁴, 8 puntos axiales, más 5 puntos centrales, haciendo un total de 29 experimentos.

Las variables independientes fueron:

Temperatura de secado : 80 – 160 °C

Tiempo de secado : 1 - 3 Hrs.

Masa de viruta : 10 – 90 g/L

Dilución de pisco : 10- 30% v/v

Tal como se muestra en el cuadro Nº 4,

Las variables dependientes fueron color, olor y sabor analizándose sensorialmente.

Leyenda

* T° : Temperatura de secado de la madera

* TIEMPO : Tiempo de secado

* VIRUTA C : Gramos de viruta/litro de destilado de

uva (58° Alcohólicos).

* VOLUMEN : Relación de V/V entre extracto de

madera y destilado de uva (40°

Alcohólicos).

CUADRO 4.: DISEÑO EXPERIMENTAL PARA EL ESTUDIO.

	VALORES CODIFICADOS		VALORES REALES					
PRUEBAS	T°	Tiempo	Viruta_C	Volumen	Т°	Tiempo	Viruta_C	Volumen
1	-1	-1	-1	-1	100	1.5	30	15
2	-1	-1	-1	1	100	1.5	30	25
3	-1	-1	1	-1	100	1.5	70	15 , ;
4	-1	-1	1	1	100	1.5	70	25
5	-1	1	-1	-1	100	2.5	30	15
6	-1	1	-1	1	100	2.5	30	25
7	-1	1	1	-1	100	2.5	70	15
8	-1	1	1	1	100	2.5	70	25
9	1	-1	-1	-1	140	1.5	30	15 .
10	1	-1	-1	1	140	1.5	30	25
11	1	-1	1	-1	140	1.5	70	15
12	1	-1	1	1	140	1.5	70	25
13	1	1	-1	-1	140	2.5	30	15
14	1	1	-1	1	140	2.5	30	25
15	1	1	1	-1	140	2.5	70	15
16	1	1	1	1	140	2.5	70	25
17	-2	0	0	0	80	2	50	20
18	2	0	0	0	160	2	50	20
19	0	-2	0	0	120	1	50	20
20	0	2	0	0	120	3	50	20
21	0	0	-2	0	120	2	10	20
22	0	0	2	0	120	2	90	20
23	0	0	0	-2	120	2	50	10
24	0	0	0	2	120	2	50	30
25 (C)	0	0	0	0	120	2	50	20
26 (C)	0	0	0	0	120	2	50	20
27 (C)	0	0	0	0	120	2	50	20
28 (C)	0	0	0	0	120	2	50	20
29 (C)	0	0	0	0	120	2	50	20

3.6. Métodos de control.

Análisis físico químico:

Durante el proceso: realizando controles de azúcar, grado alcohólico, pH.

- % Sólidos solubles, usando refractómetro de mesa.
- pH, usando potenciómetro.
- Grado alcohólico, mediante alcoholímetro.
- Acidez volátil, mediante destilación y valoración
 (INDECOPI ITINTEC, 1987)

En producto final: la pruebas realizadas al mejor licor fueron de ésteres, acetato de etilo, furfural, aldehídos, alcoholes superiores, acidez volátil, alcohol metílico en el laboratorio La Molina Calidad Total Laboratorios.

 La evaluación sensorial, se tomó en cuenta las características organolépticas (sabor, color y olor) con una escala hedónica de 5 puntos, estas pruebas se realizaron durante los diferentes periodos de añejamiento del licor y se contó con panelistas semi entrenados. Los resultados obtenidos se analizaron con el programa STATISTICA 5.0.

IV. RESULTADOS Y DISCUSIONES

4.1.- Características de la materia prima.

•La uva.

En el cuadro N° 5, se presentan las características fisicoquímicas obtenidas de la uva variedad Borgoña negra, una vez estrujada. Se observó un bajo contenido de sólidos solubles (14%), con una elevada acidez (1.061%), estos datos son similares a los datos experimentales obtenidos

La acidez del mosto constituye un dato enológico importante así como la concentración de azúcar; estos pueden variar según las cepas, el clima y los años (Ribéreu – Gayon, 1989).

Cuadro 5: Características físico químicas de la uva variedad Borgoña negra, después de la estrujado.

CARACTERÍSTICAS	UVA ESTRUJADA
Sólidos solubles (%)	14.0
 Acidez total Titulable (%) 	1.06
• pH	3.4

La madera.

En el cuadro N° 6 se presentan algunas características físicas y químicas de la madera que fue obtenida en la provincia de Juanjui. Se puede apreciar que la madera tiene una 12% de humedad y un olor característico similar al roble.

Cuadro 6: Características físicas y químicas de la madera Estoraque

CARACTERÍSTICAS	MADERA
Tipo de muestra	Viruta
Humedad (%)	12
• Olor	Característico roble
• Color	Marrón claro.

4.2. Características del destilado de uva.

En el cuadro N° 7 se puede apreciar algunas características físicas y químicas del destilado de uva, teniendo así como grado alcohólico corregido 40°, y las características organolépticas similares al pisco.

Cuadro 7: Características físicas y químicas del destilado de uva.

	DESTILADO DE UVA		
Grado Alcohólico (%)	40		
• Olor	Uva		
• Color	Transparente.		
• sabor	Uva		

Según Verapinto (2009), el líquido obtenido tiene diferentes características de acuerdo a cada uno de los momentos de la destilación, que son tres: Cabeza, cuerpo y cola

4.3. Secado de la madera.

En el cuadro N° 8 se muestran las humedades obtenidas durante el secado de la madera.

Cuadro 8: Porcentajes de humedad de la madera estoraque a diferentes tiempos y temperaturas de secado.

TIEMPO (Hrs)	TEMPERATURA(°C)				
	80	100	120	140	160
1	11.5	10.5	10	9.87	9
1.5	11	10.2	9.8	9.6	8.7
2	10.8	10.1	9.3	9.4	8.5
2.5	10.6	9.2	8.9	9.3	8.2.
					+ -

4.4. Pruebas durante el añejamiento del licor con estoraque.

Durante este periodo se realizaron evaluaciones sensoriales mediante pruebas afectivas (método de escala hedónica), con 8 panelistas semi- entrenados. Las pruebas sensoriales fueron realizadas a los 3, 6 y 12 meses de añejamiento; los resultados se muestran a continuación.

4.4.1. Evaluación sensorial a los 3 meses de añejamiento.

Color:

El análisis de varianza, que se muestra en el Cuadro Nº 09 (anexo 1), indica que tienen influencia significativa (p < 0.005) la variable dilución del extracto de estoraque en el destilado a 40 grados alcohólicos (v/v) y la interacción de las variables temperatura de secado y la masa de viruta adicionada en la extracción. Las otras variables, tiempo de secado, la dilución del extracto (v/v) y masa de madera no muestran influencia significativa.

Este resultado se presenta en las Figuras 2-7.

En la figura 2.- se observa un incremento de la puntuación respecto al color para dilución del extracto entre 20 - 28 %(V/V) y masa de viruta entre 60 - 80 g/L.

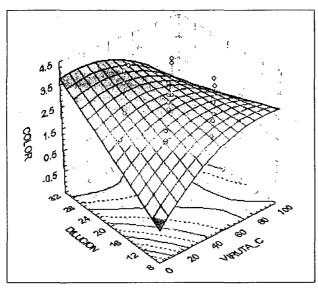
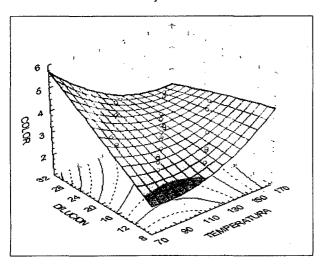
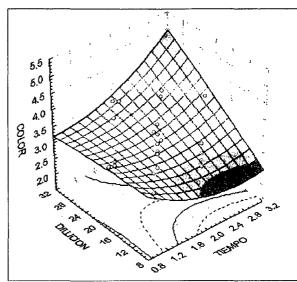
En la figura 3.- se observa un mejor color para tiempos elevados y diluciones del extracto mayores al 20%(V/V)

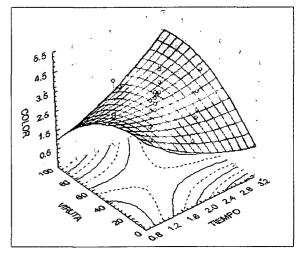
En la figura 4.- se observa mejor puntuación respecto al color, al incrementar la dilución extracto y temperaturas bajas como para dilución de extracto bajo y temperaturas altas.

En la figura 5.- se observa incremento de su puntuación en el color para masa de viruta entre 40 – 80g/L y tiempos de secado entre altos y bajos.

En la figura 6.- Se observa que para tiempos bajos y temperaturas altas y mayores tiempos y temperaturas de secado tienen mejor color.

En la figura 7.- Se observa que temperaturas de secado alto, con masa de virutas bajas y temperaturas de secado bajas y altas concentraciones tienen mejor color respecto al licor.


Figura 2. Evaluación del color en función de la dilución y la masa de viruta.

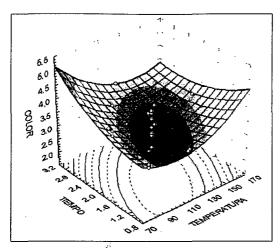

Figura 4. Evaluación del color en función de la dilución y la temperatura secado.

Figura 3. Evaluación del color en función de la dilución y tiempo de secado.

Figura 5. Evaluación del color en función de la masa de viruta y el tiempo de secado

Figura 6. Evaluación del color en función del tiempo y temperatura de secado

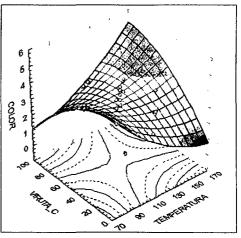


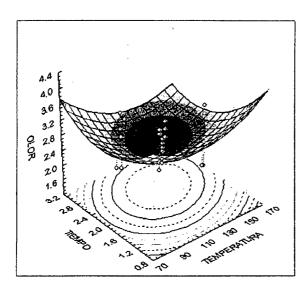
Figura 7. Evaluación del color en función de la masa de viruta y temperatura de secado.

Estos resultados obtenidos en las todas las gráficas se observa que todas las curvas tridimensionales tienden a mejorar con tiempo de añejamiento ya que los resultados son muy dispersos para poder obtener los parámetros del licor.

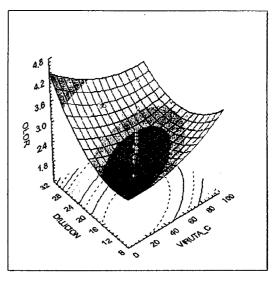
OLOR

El análisis de varianza, que se muestra en el Cuadro Nº 10 (anexo 1), indica que no hay influencia significativa (p < 0.005) Las variables, tiempo de secado, temperatura de secado la dilución del extracto (v/v) y masa de madera no muestran influencia significativa. Pero en las figuras 8 - 13 se observa lo siguiente:

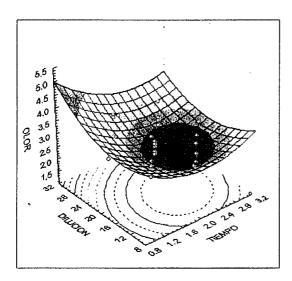
En la figura 8.- Se observa que para tiempos bajos y temperaturas altas y mayores tiempos y temperaturas de secado tienen mejor olor.


En la figura 9.- se observa un incremento de su puntuación respecto al color para altas dilución de los extractos con baja masa de viruta y dilución de extractos bajos con alta masa de viruta.

En la figura 10.- En la figura presenta mejor puntuación en el olor para bajos tiempos de secado y diluciones del extracto mayores al 20%(V/V).


En la figura 11.- se observa mejor puntuación respecto al olor, al incrementar la dilución extracto y altas temperaturas de secado.

En la figura 12.- Se observa que temperaturas de secado alto, con concentración de virutas bajas y temperaturas de secado bajas y altas concentraciones tienen mejor olor respecto al licor.


En la figura 13.- Se observa que para tiempos bajos y temperaturas altas y mayores tiempos y temperaturas de secado tienen mejor olor.

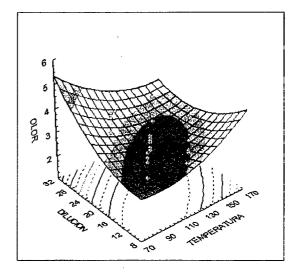

Figura 8. Evaluación del olor en función del tiempo y temperatura de secado

Figura 9. Evaluación del olor en función de la dilución y la masa de viruta.

Figura 10. Evaluación del olor en función del tiempo de secado y la dilución.

Figura 11. Evaluación del olor en función a la temperatura y dilución.

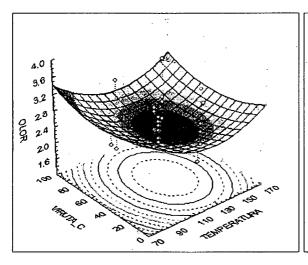


Figura 12. Evaluación del color en función de la temperatura de secado y la masa de viruta

Figura 13. Evaluación del color en función del tiempo secado y la masa de viruta.

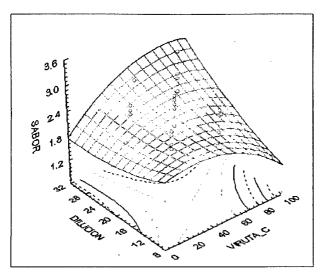
SABOR

El análisis de varianza, que se muestra en el Cuadro Nº 11 (anexo 1), indica que hay tienen influencia significativa (p < 0.005) la variable de dilución del extracto de la madera de estoraque (v/v). Las otras variables, temperatura de secado, tiempo de secado, masa de viruta (g/L) no muestran influencia significativa.

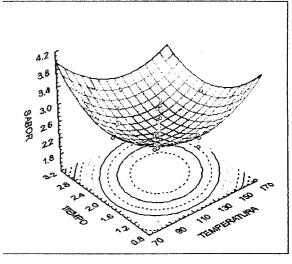
Este resultado se observó en las Figuras 14-19.

En la figura 14.- se observa en la gráfica tridimensional que las mejores resultados al atributo de sabor respecto al licor, esta en dilución de extracto entre 20 – 28 % (V/V) y masa de viruta entre 50 – 80 g/L.

En la figura 15.- En la proyección de la superficie se observa un incremento de su puntuación respecto al color con tiempos bajos y temperaturas altas de secado de la madera y para la región de mayores tiempos y temperaturas de secado menores.se observa un incremento de su puntuación respecto al color para altas


dilución de los extractos con baja masa de viruta y dilución de extractos bajos con alta masa de viruta.

En la figura 16.-S observa en la gráfica tridimensional que hay una mejor puntuación de sabor del licor para tiempos de secado entre 2 – 3 Hrs y volumen de dilución entre 20 – 28%(V/V)


En la figura 17.- en la gráfica tridimensional observa un incremento de su puntuación al sabor del licor, para tiempos de secado de la madera altas y bajas, en una región de masa de viruta entre 40 – 80 g/l

En la figura 18.- se observa un incremento de la puntuación del sabor del licor para masa de viruta entre 50 – 80g/L y temperaturas de secado bajas y altas.

En la figura 19.- Se observa que la mejor puntuación de sabor respecto al licor está en la región de dilución del extracto entre 20 - 28 % (v/v) con temperaturas bajas y altas.

Figura 14. Evaluación del sabor en función de la dilución y masa de viruta.

Figura 15. Evaluación del sabor **en función** del tiempo y temperatura de secado.

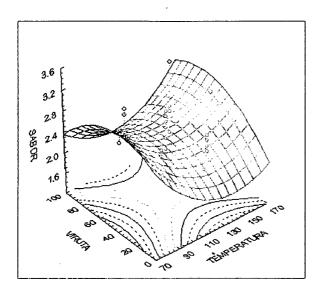
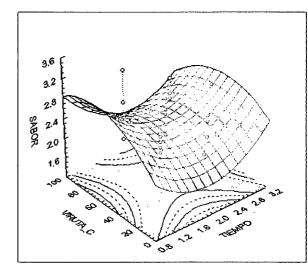
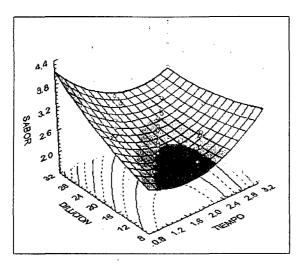
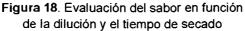





Figura 16. Evaluación del sabor en función de la masa de viruta y la temperatura de secado

Figura 17. Evaluación del sabor en función del tiempo de secado y la masa de viruta.

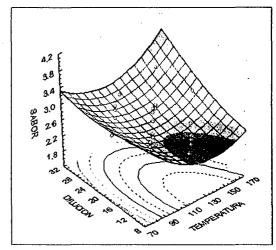


Figura 19. Evaluación del sabor en función de la dilución y la temperatura de secado

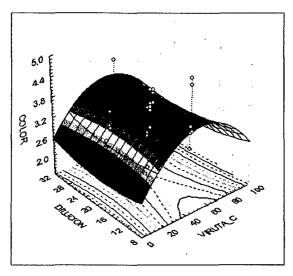
Este resultado, posiblemente, se debe a que el tiempo de añejamiento evaluado, no ha sido suficiente para que transferencia de las sustancias de la madera que dan al color, olor y sabor al licor, pero se observan en todas las graficas que la tendencia que muestran, con el tiempo de añejamiento tiende a mejorar respecto a sus características organolépticas al licor con estoraque.

4.4.2. Evaluación sensorial a los 6 meses de añejamiento.

COLOR

El análisis de varianza, que se muestra en el Cuadro Nº 12 (anexo 2), indica que no hay influencia significativa (p < 0.005) Las variables, tiempo de secado, temperatura de secado la dilución del extracto (v/v) y masa de madera no muestran influencia significativa. Pero en las figuras 20 - 25 se observa lo siguiente:

En la figura 20.- Se observa que la masa de viruta entre 40 y 60 g/L influye para dar el color al licor, mientras que la dilución de extracto (v/v) no influye.


En la figura 21.- Se observa que hay una región de la gráfica máxima respecto al color licor para tiempos entre 2- 2.4hrs. Y temperaturas de secado entre 90 – 110°C.

En la figura 22.- Se observa que la masa de viruta entre 40 - 80 g/L y temperaturas de secado entre 110 - 150°C hay un buen color del licor.

En la figura 23.- Se observa una región definida en la gráfica donde la masa de viruta entre 40 - 60 g/L y tiempos de secado entre 2 - 2.8 Hrs, dan un mejor color del licor.

En la figura 24.- se observa en la gráfica que los mejores resultados están entre los puntos centrales en el tiempo de secado, mientras que la dilución del extracto de estoraque esta entre 16 - 20 g/L.

En la figura 25.- se observa una mejor puntuación de color en el licor con dilución de extracto entre 20 - 28% y temperaturas de secado entre 90 - 110 ° C

Figura 20. Evaluación del color en función de la dilución y masa de viruta.

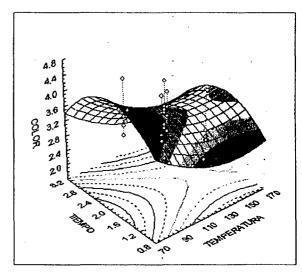
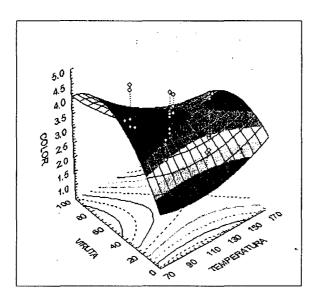
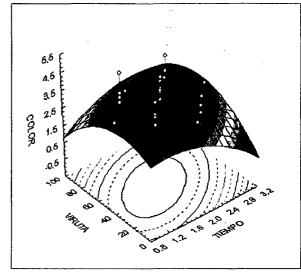




Figura 21. Evaluación del color en función temperatura y tiempo de secado.

Figura 22. Evaluación del color en función a la masa y la temperatura de secado

Figura 23. Evaluación del color en función del tiempo de secado y la masa de viruta.

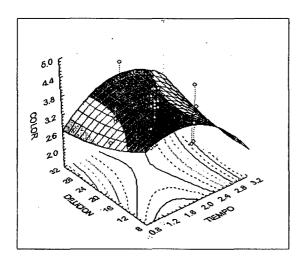


Figura 24. Evaluación del color en función de la dilución y el tiempo de secado

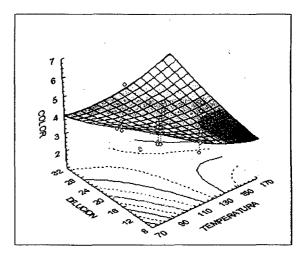
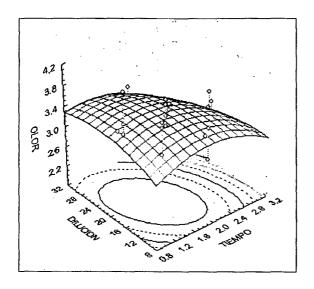


Figura 25. Evaluación del color en función de la dilución y la temperatura de secado

Olor:

El análisis de varianza, que se muestra en el Cuadro Nº 13 (anexo 2), indica que no hay influencia significativa (p < 0.005) Las variables, tiempo de secado, temperatura de secado la dilución del extracto (v/v) y masa de madera no muestran influencia significativa. Pero en las figuras 26 - 31 se observa lo siguiente:

En la figura 26.- En la gráfica se observa que tiempos de secado entre 2 – 2.4hrs y dilución de extracto entre 20– 25%(V/V), dan un mejor olor al licor.


En la figura 27.- Se observa que para dilución de extracto de estoraque entre 20 - 24 % (v/v) y masas de viruta 50 - 80 g/L dan un mejor resultado de olor.

En la figura 28.- Se observa en la gráfica una región de mayor puntuación de olor del licor para diluciones de extracto de estoraque entre 20 - 28%(v/v) y temperaturas de secado entre 90 - 110 ° C.

En la figura 29.- En la gráfica se observa una región máxima del olor para masas de viruta entre 50 - 80g/L y tiempos de secado entre 2 - 3 Hrs.

En la figura 30.- Se observa en la gráfica que temperaturas secado entre 90 -130 °C y tiempo entre 2 – 3 Hrs para el secado de madera dan un buen olor al licor con estoraque.

En la figura 31.- se observa para masas de viruta entre 50 y 80 g/L y tiempos de secado entre 1-3 Hrs, hay un mejor olor del licor.

Figura 26. Evaluación del olor en función de la dilución y tiempo de secado.

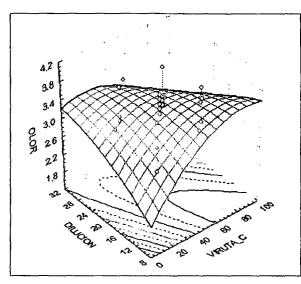


Figura 27. Evaluación del olor en función de la dilución y la masa de viruta.

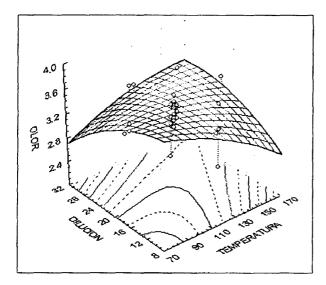


Figura 28. Evaluación del olor en función del la dilución y la temperatura de secado

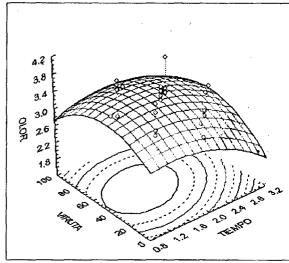


Figura 29. Evaluación del olor en función del tiempo de secado y la masa de viruta.

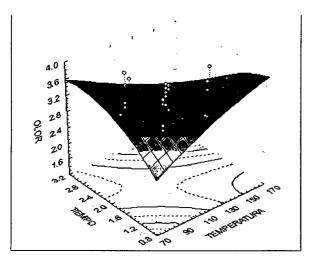


Figura 30. Evaluación del olor en función al tiempo y temperatura de secado.

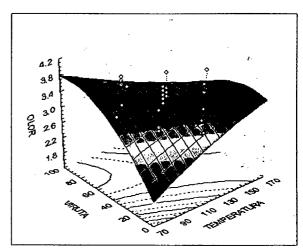


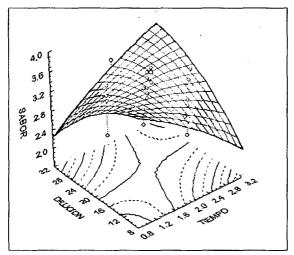
Figura 31. Evaluación del olor en función de a la masa de viruta y la temperatura de secado

Sabor

El análisis de varianza, que se muestra en el Cuadro Nº 14 (anexo 2), indica que no hay influencia significativa (p < 0.005) Las variables, tiempo de secado, temperatura de secado la dilución del extracto (v/v) y masa de madera no muestran influencia significativa. Pero en las figuras 32 - 37 se observa lo siguiente:

En la figura 32- En la gráfica se observa que tiempos de secado entre 2 – 2.4hrs y dilución de extracto entre 16– 25%(V/V), dan un mejor sabor al licor.

En la figura 33.- Se observa que para dilución de extracto de estoraque entre 20 - 24 % (v/v) y masas de viruta 50 - 80 g/L dan un mejor resultado de sabor.


En la figura 34.- Se observa en la gráfica una región de mayor puntuación de sabor del licor para diluciones de extracto de estoraque entre 20 – 28%(v/v) y temperaturas de secado entre 110 – 150 ° C.

En la figura 35.- En la gráfica se observa una región máxima del sabor para masas de viruta entre 50 – 80g/L y cualquier tiempos de

secado, es decir el tiempo de secado no tiene influencia en el sabor del licor.

En la figura 36.- Se observa en la gráfica que temperaturas secado entre 90 -130 °C y tiempo entre 2 – 3 Hrs para el secado de madera dan un buen sabor al licor con estoraque.

En la figura 37.- se observa que para masas de viruta entre 50 y 80 g/L y que tiempo de secado no tiene influencia a en dar un mejor sabor del licor.

Figura 32. Evaluación del sabor en función de la dilución y tiempo de secado.

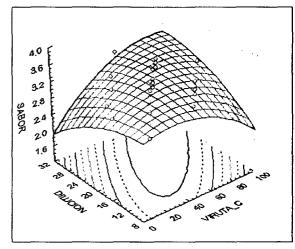
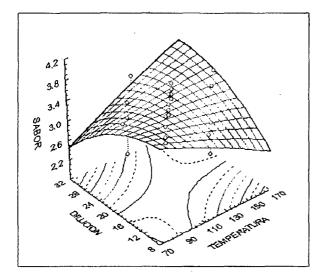



Figura 33. Evaluación del sabor en función de la dilución y masa de viruta.

Figura 34. Evaluación del sabor en función de la dilución y la temperatura de secado

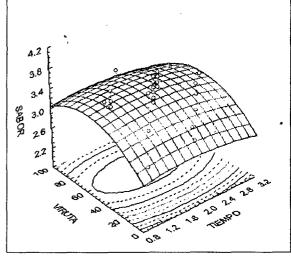
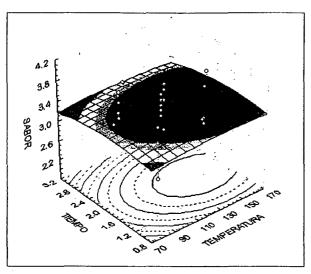
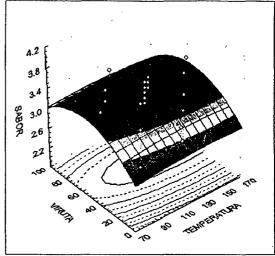




Figura 35. Evaluación del sabor en función de la masa de viruta y el tiempo de secado

Figura 36. Evaluación del sabor en función al tiempo y temperatura de secado.

Figura 37. Evaluación del sabor en función a la masa y la temperatura de secado

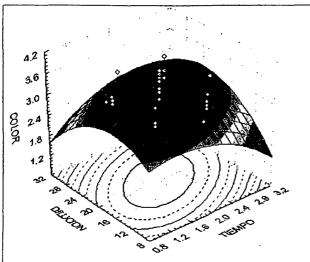
En estos resultados, se observan que hay regiones en la gráficas tridimensionales donde el licor de estoraque tiene mejores características organolépticas, apreciando así puntos máximos y mínimos en las graficas, lo que significa que las sustancias químicas de madera están influenciado en el licor, pero el tiempo de añejamiento no es lo suficiente porque muestran aun parámetros de elaboración no definidos.

4.4.3. Evaluación sensorial a los 12 meses de añejamiento.

Color:

El análisis de varianza, que se muestra en el Cuadro Nº 15 (anexo 2), indica que hay influencia significativa (p < 0.005) en la masa de viruta (g/L) y la dilución del extracto de estoraque (V/V). Las variables, tiempo y temperatura no muestran influencia significativa. Pero en las figuras 38 - 43 se observa lo siguiente:

En la figura 38- En la gráfica se observa una región máxima para tiempos de secado entre 2- 2.5 Hrs y diluciones de extracto entre 20 – 25% (v/v).


En la figura 39.- Se observa que para dilución de extracto de estoraque entre 20 - 24 % (v/v) y masas de viruta 40 - 60 g/L dan un mejor resultado de color.

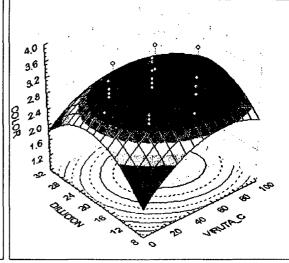
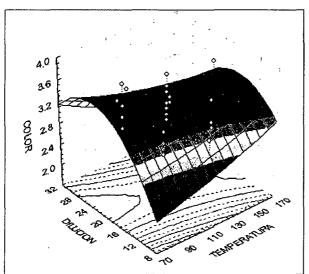
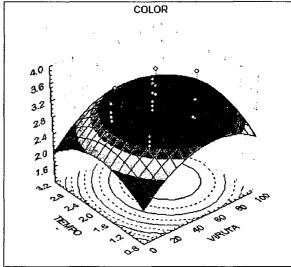
En la figura 40.- Se observa en la gráfica ψna región máxima en color del licor para diluciones de extracto de estoraque entre 20 – 25%(v/v) y temperaturas de secado entre 110 – 130 ° C.

En la figura 41.- En la gráfica se observa una región máxima del color para masas de viruta entre 40 – 60g/L y cualquier tiempos de secado, es decir el tiempo de secado no tiene influencia en el color del licor.

En la figura 42.- Se observa en la gráfica que temperaturas secado entre 110 -130 °C y tiempo entre 2 - 2.5 Hrs para el secado de madera dan un buen color al licor de estoraque.

En la figura 43.- se observa que para masas de viruta entre 40 y 60 g/L y no tiene influencia tiempo de secado, dan un mejor color del licor.

Figura 38. Evaluación del color en función de la dilución y tiempo de secado.

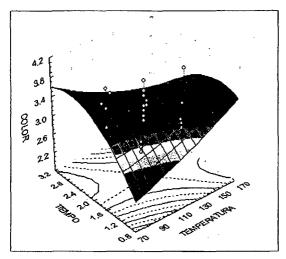

Figura 39. Evaluación del color en función de la dilución y la masa de viruta.

Figura 40. Evaluación del color en función del la dilución y la temperatura de secado

Figura 41. Evaluación del color en función del tiempo de secado y la masa de viruta.

Figura 42. Evaluación del color en función al tiempo y temperatura de secado.

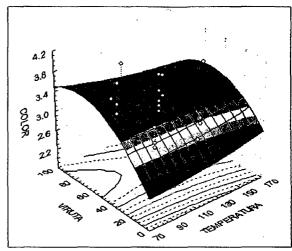


Figura 43. Evaluación del color en función a la masa y la temperatura de secado

Olor:

El análisis de varianza, que se muestra en el Cuadro Nº 16 (anexo 2), indica que hay influencia significativa (p < 0.005) en la masa de viruta (g/L) y la dilución del extracto de estoraque (V/V). Las variables, tiempo y temperatura no muestran influencia significativa. Pero en las figuras 44 - 49 se observa lo siguiente:

En la figura 44- En la gráfica se observa una región máxima para el olor tiempos de secado entre 2- 2.5 Hrs y diluciones de extracto entre 20 - 25% (v/v).

En la figura 45.- Se observa que para dilución de extracto de estoraque entre 20 - 24 % (v/v) y masas de viruta 40 - 60 g/L dan un mejor resultado de olor.

En la figura 46.- Se observa en la gráfica una región máxima en olor del licor para diluciones de extracto de estoraque entre 20 – 25%(v/v) y temperaturas de secado entre 110 – 130 ° C.

En la figura 47.- En la gráfica se observa una región máxima del olor para masas de viruta entre 40 – 60g/L y cualquier tiempos de

secado, es decir el tiempo de secado no tiene influencia en el olor del licor.

En la figura 48.- Se observa en la gráfica que temperaturas secado entre 110 -130 °C y tiempo entre 2 - 2.5 Hrs para el secado de madera dan un buen olor al licor de estoraque.

En la figura 49.- se observa que para masas de viruta entre 40 y 60 g/L y no tiene influencia el tiempo de secado, dan un mejor olor del licor.

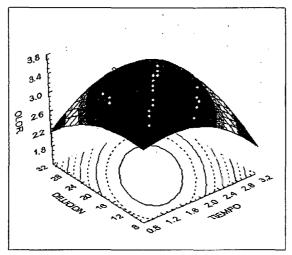
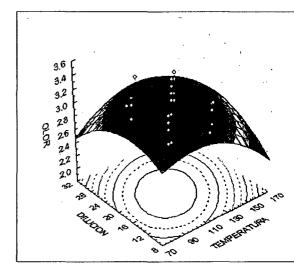
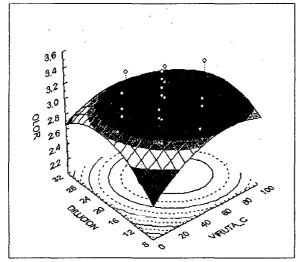




Figura 44. Evaluación del olor en función de la dilución y tiempo de secado.

Figura 45. Evaluación del olor en función de la dilución y la temperatura de secado.

Figura 46. Evaluación del olor en función del la dilución y la masa de viruta.

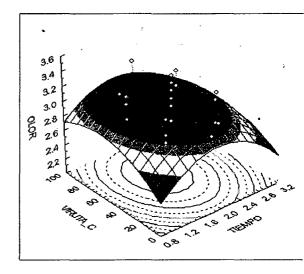


Figura 47. Evaluación del olor en función del tiempo de secado y la masa de viruta.

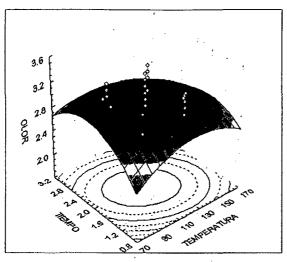


Figura 48. Evaluación del olor en función al tiempo y temperatura de secado.

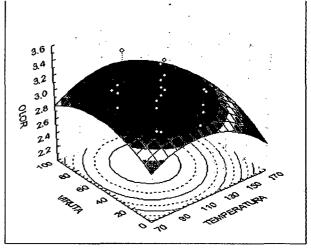
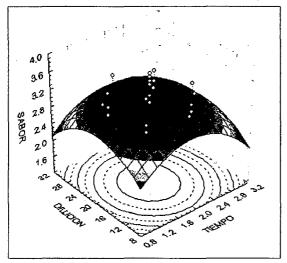


Figura 49. Evaluación del olor en función a la masa y la temperatura de secado

Sabor:

El análisis de varianza, que se muestra en el Cuadro № 17 (anexo 2), indica que hay influencia significativa (p < 0.005) en el tiempo de secado del estoraque. Las variables, temperatura de secado, masa de viruta (g/L) y dilución del extracto (v/v) no muestran influencia significativa. Pero en las figuras 50 – 55 se observa lo siguiente:

En la figura 50- En la gráfica se observa una región máxima para el sabor tiempos de secado-entre 2- 2.5 Hrs y diluciones de extracto entre 20 - 25% (v/v).


En la figura 51.- Se observa que para dilución de extracto de estoraque entre 20 - 24 % (v/v) y masas de viruta $40 - 60 \text{ g/L} \cdot \text{dan un mejor resultado de sabor.}$

En la figura 52.- Se observa en la gráfica una región máxima en sabor del licor para diluciones de extracto de estoraque entre 20 - 25%(v/v) y temperaturas de secado entre 110 - 130 ° C.

En la figura 53.- En la gráfica se observa una región máxima del sabor para masas de viruta entre 40 - 60g/L y tiempos de secado entre 2 - 2.5 Hrs.

En la figura 54.- Se observa en la gráfica que tiempo de secado entre 2 – 2.5 Hrs dan un buen sabor al licor de estoraque. La temperatura de secado no tiene influencia en el sabor del licor.

En la figura 55.- se observa que para masas de viruta entre 40 y 60 g/L y tiempos de secado entre 2 – 2.5 Hrs., dan un mejor sabor del licor.

Figura 50. Evaluación del olor en función de la dilución y tiempo de secado.

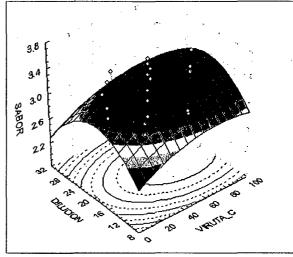
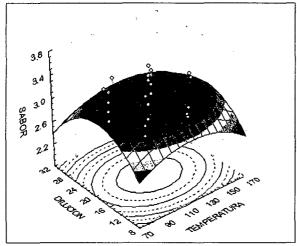



Figura 51. Evaluación del olor en función de la dilución y la masa de viruta.

Figura 52. Evaluación del olor en función del la dilución y la temperatura de secado

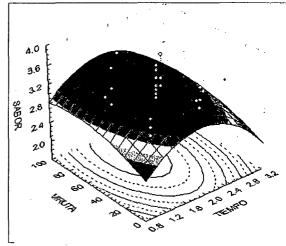
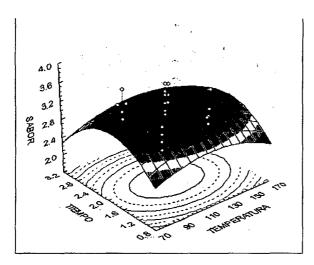
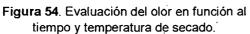
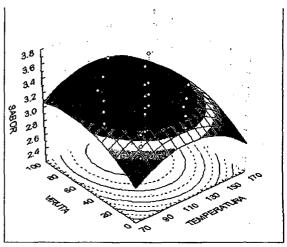





Figura 53. Evaluación del olor en función de tiempo de secado y la masa de viruta.

Figura 55. Evaluación del olor en función a la masa y la temperatura de secado

Los resultados obtenidos, posiblemente, se debe que el tiempo de añejamiento ha sido suficiente para establecer el equilibrio químico entre las sustancias de la madera y el destilado de uva. Además las graficas muestran regiones máximas en los puntos centrales como mejores parámetros para obtener un licor de buenas características organolépticas. Los resultados son

- Temperatura : 110 – 130°C

- Tiempo : 2 – 2.5 Hrs.

- Masa de viruta : 40 - 60 g/L

- % de dilución : 20 – 25% V/V

4.5. BALANCE DE MATERIALES PARA LA OBTENCION DEL LICOR CON ESTORAQUE.

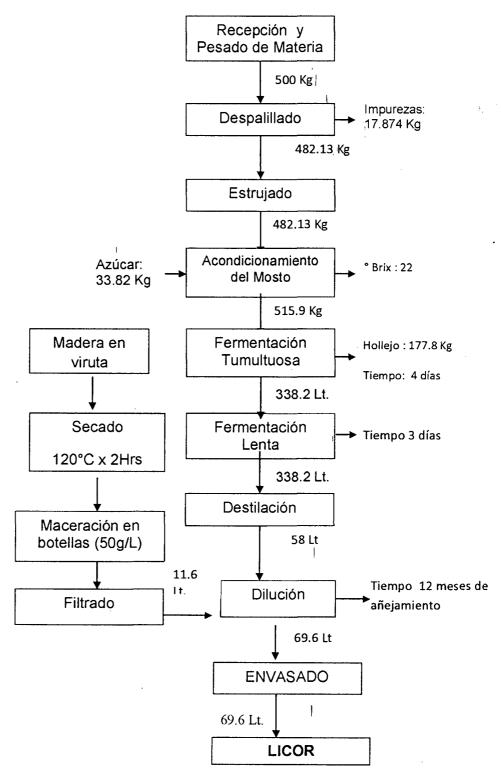


Figura 56: Flujo grama y balance de materia para la obtención del licor.

4.6. ANÁLISIS FÍSICO QUÍMICO DEL MEJOR LICOR CON ESTORAQUE.

En cuanto a las características de calidad que se obtuvieron del licor de estoraque a 120°C durante 2 horas con masa de viruta de (50g/L) y dilución de 20%V/V fueron los siguientes:

Cuadro 9: Comparación de los resultados fisicoquímicos obtenidos del licor de Estoraque con las Normas Técnicas del Brandy y Pisco

COMPOSICIÓN DE LOS ANÁLISIS	PRODUCTO OBTENIDO	211.001	211.012
COMPOSICION DE LOS AMALISIS	LICOR DE ESTORAQUE	BRANDY	PISCO
Esteres (mg/100. Alcohol anhidro)	24.10	60	70
Acetato de etilo (mg/100. Alcohol anhidro)	24.10	280	290
Furfural (mg/100. Alcohol anhidro)	0.00	5	4
Aldehídos como acetaldehídos (mg/100. Alcohol anhidro)	15.30	60	45
Alcoholes superiores (mg/100. Alcohol anhidro)	250.10	350	400
Acidez volátil (g/L de muestra)	0.00	200	150
Alcohol metílico (mg/100. Alcohol anhidro)	140.10	100	150
Extracto (g/L de muestra original)	40.00	38-48	35-40
Azucares reductores totales (%)	0.00	3	2

V. CONCLUSIONES

- 1. Las mejores condiciones de secado de madera fueron a 120 °C durante 2 horas.
- 2. La relación adecuada entre madera y destilado de uva (58 grados alcohólicos) para la obtención de extracto de estoraque fue 50 g/L.
- 3. La relación óptima entre el extracto y el destilado de uva (42 grados alcohólicos) fue 20% v/v.
- 4. En cuanto a las características organolépticas del licor obtenido, presentó un color ámbar brillante, con un olor casi predominante de la uva y un sabor a característico a la madera siendo de preferencia del panel de panelistas.
- 5. El licor con estoraque con los parámetros obtenidos presenta una estabilidad ámbar en el color, un buen aroma predominante a la uva.

VI. RECOMENDACIONES

- Seguir añejando el producto y realizar evaluaciones sensoriales para poder analizar si el producto mejora respecto a sus características organolépticas.
- 2. Utilizar siempre levaduras específicas para la vinificación durante la inoculación del mosto, y evitar el uso de pie de cuba porque genera la aleatoriedad de la calidad del vino, es decir, cuando se cuenta con dos o mas pie de cuba de distintos orígenes, durante la vinificación de un mismo viñedo, se obtiene vinos de diferentes calidades.
- Continuar realizando estudios sobre la elaboración de este licor, con de los rangos establecidos, hacer pruebas de diferenciación o comparación con otros licores que tengas un similar procedimiento, por ejemplo el coñac, ron y whisky.
- 4. Diseñar equipos con gran eficiencia para la elaboración de este licor como: estrujadora, despalilladora, equipos de fermentación y destiladora, para mejorar la producción, el control del proceso de vinificación y destilación del licor.
- 5. Realizar diferentes estudios químicos de la madera, para poder determinar las sustancias químicas que influyen en el color, olor y sabor del licor procesado.

VII. BIBLIOGRAFIA

- Arostegui V., Antonio .1982.Recopilacion Y Análisis Tecnológicos De Maderas Peruanas.FAO.Documento de Trabajo n°2.Lima – Perú.
- Bravo Díaz, Luis. 2001. Farmacognosia Especial. Bogotá Colombia.
- Castañeda C.M. 1992 "Viticultura Y Vinicultura", Oportunidades
 Comerciales, Boletín De La Cámara De Comercio Industria Turismo De
 San Martin Tarapoto. Año 1 N° 5. Tarapoto Perú
- Correa y Bernal .1992. Especies vegetales promisorias de los países del Convenio Andrés Bello.
- De Rosa, T. Tecnología Del Vino Tinto. Ediciones Mundi Prensa España.
 1998.
- García G. N. 1998 "Tesis: Elaboración Del Vino A Partir De La Uva Borgoña Negra (Vitis labrusca), Usando Azúcar Invertido En Tarapoto -San Martin, TARAPOTO – PERU
- Hidalgo, L. 1993. "Tratado De Viticultura" Tercera Edición. Editorial Mundi Prensa, Madrid – España.
- Jagnow & Dawid 1991 "Biotecnología", Editorial Acribac S.A. Zaragoza -España.
- Junta de Acuerdo de Cartagena. 1981. Descripción General Y Anatómica De 105 Maderas Del Grupo Andino. Lima – Perú.
- Frazier & Westhoff 1995 "MICROBIOLOGIA DE LOS ALIMENTOS"", EDITORIAL ACRIBAC S.A. ZARAGOZA ESPAÑA.
- Larrea, A. 1978 "DE LA VID AL VINO", EDITORIAL AEDOS. BARCELONA
 ESPAÑA.
- Lastra Rivera, José Anatolio.1987. Compilación De La Propiedades Físico-Mecánicas Y Usos Posibles De 178 Maderas En Colombia. Libro técnico ACIF N° 1. Bogotá – Colombia.
- Ministerio de Agricultura Región Agraria XIII, oficina Estadística Agraria,
 Tarapoto Perú 2010.
- Peñin, J. 1998 "Nociones Para Saber De Vinos", Editorial Elfos. Barceloná-España
- Verapinto Cruz, María Del Carmen. 2009. Elaboración de Destilados de Uva. Libro técnico. Lima – Perú 2009.

VIII. ANEXOS

ANEXO 1

CÁLCULOS DEL ANVA PARA LAS CARACTERÍSTICAS ORGANOLÉPTICAS DEL LICOR CON ESTORAQUE DESPUÉS DE 3 MESES DE AÑEJADO.

ATRIBUTO SENSORIAL: COLOR

Cuadro N° 10: ANVA para atributo de color.

FACTOR		SS	df	MS	F	р
(1) TEMPERATURA	(L)	0.01042	1	0.010420	0.02797820	0.8695730
TEMPERATURA	(Q)	0.54787	1	0.547870	1.47105710	0.2452490
(2) TIEMPO	(L)	0.26042	1	0.260420	0.69924013	0.4170870
TIEMPO	(Q)	0.17793	1	0.177930	0.47775054	0.5007390
(3) MASA DE VIRUTA	(L)	0.06510	1	0.065100	0.17479661	0.6822160
MASA DE VIRUTA	(Q)	0.86712	1	0.867120	2.32825859	0.1793130
(4) % DILUCIÓN	(L)	1.89844	1	1.898440	5.09740202	0.0404590
% DILUCIÓN	(Q)	0.00310	1	0.003100	0.00832365	0.9285550
1L by 2L		0.25000	1	0.250000	0.67126193	0.4263400
1L by 3L		2.64062	1	2.640620	7.09019075	0.0185610
1L by 4L		0.87891	1	0.878910	2.35991531	0.1467780
2L by 3L		1.56250	1	1.562500	4.19538709	0.0597700
2L by 4L		0.31641	1	0.316410	0.84957595	0.3722870
3L by 4L		1.12891	1	1.128910	3.03117724	0.1036000
Error		5.21406	14	0.372433		
TOTAL SS		16.18966	28			

ATRIBUTO SENSORIAL: OLOR

Cuadro N° 11 : ANVA para El atributo de olor

FACTOR		SS	df	MS	F	р
(1) TEMPERATURA	(L)	0.078776	1	0.078776	0.31706208	0.582285
TEMPERATURA	(Q)	0.320821	1	0.320821	1.29125844	0.274894
(2)TIEMPO	(L)	0.797526	1	0.797526	3.20992760	0.094827
TIEMPO	(Q)	0.526480	1	0.526480	2.11900638	0.167538
(3)MASA DE VIRUTA	(L)	0.000651	1	0.000651	0.00262018	0.959898
MASA DE VIRUTA	(Q)	0.107350	1	0.107350	0.43206833	0.521637
(4)% DILUCIÓN	(L)	0.891276	1	0.891276	3.58725788	0.079073
% DILUCIÓN	(Q)	0.526480	1	0.526480	2.11900638	0.167538
1L by 2L		0.047852	1	0.047852	0.19259743	0.667462
1L by 3L		0.352539	1	0.352539	1.41891884	0.253386
1L by 4L		0.516602	1	0.516602	2.07924885	0.171309
2L by 3L		0.821289	1	0.821289	3.30557026	0.090501
2L by 4L		0.047852	1	0.047852	0.19259743	0.667462
A 3L by 4L		0.165039	1	0.165039	0.66425827	0.428708
ErrorT		3.478385	14	0.248456		
TOTAL SS		8.205819	28			

ATRIBUTO SENSORIAL: SABOR

Cuadro N° 12 : ANVA para atributo de sabor del licor con Estoraque

FACTOR		SS	df	MS	F	p
(1) TEMPERATURA	(L)	0.023437	1	0.023437	0.19166387	0.668211
TEMPERATURA	(Q)	0.329230	1	0.329230	2.69238790	0.123094
(2)TIEMPO	(L)	0.010004	1	0.010004	0.08181104	0.779045
TIEMPO	(Q)	0.431069	1	0.431069	3.52521021	0.081434
(3)MASA DE VIRUTA	(L)	0.651040	1	0.651040	5.32409628	0.477627
MASA DE VIRUTA	(Q)	0.209482	1	0.209482	1.71310877	0.211661
(4)% DILUCIÓN	(L)	0.585938	1	0.585938	4.79170300	0.046040
% DILUCIÓN	(Q)	0.032049	1	0.032049	0.26209136	0.616666
1L by 2L		0.035156	1	0.035156	0.28749989	0.600242
1L by 3L		0.063756	1	0.063756	0.52138591	0.482138
1L by 4L		0.061256	1	0.061256	0.50094133	0.490702
2L by 3L		0.016256	1	0.016256	0.13293885	0.720851
2L by 4L		0.146306	1	0.146306	1.19646601	0.292492
3L by 4L		0.191406	1	0.191406	1.56528627	0.231397
Error		1.711945	14	0.122282		
TOTAL SS		4.011345	28			

ANEXO 2

CÁLCULOS DEL ANVA PARA LAS | CARACTERÍSTICAS ORGANOLÉPTICAS DEL LICOR CON ESTORAQUE DESPUÉS DE 6 MESES DE AÑEJADO.

ATRIBUTO SENSORIAL: COLOR

Cuadro N° 13 : ANVA para atributo de color

FACTOR		SS	df	MS	F	р
(1) TEMPERATURA	(L)	1.203780	1	1.203780	2.93586465	0.108679
TEMPERATURA	(Q)	0.214320	1	0.214320	0.52269892	0.481600
(2)TIEMPO	(L)	0.344400	1	0.344400	0.83994732	0.374929
TIEMPO	(Q)	0.792230	1	0.792230	1.93214711	0.186230
(3)MASA DE VIRUTA	(L)	0.005860	1	0.005860	0.01429179	0.906545
MASA DE VIRUTA	(Q)	1,659000	1	1.659000	4.04608770	0.063934
(4)% DILUCIÓN	(L)	0.031900	1	 0.031900	0.07780000	0.784376
% DILUCIÓN	(Q)	0.050260	1	0.050260	0.12257768	0.731479
1L by 2L		0.000980	1	0.000980	0.00239009	0.961766
1L by 3L		0.430660	1	0.430660	1.05032437	0.322814
1L by 4L		0.711910	1	0.711910	1.73625696	0.208769
2L by 3L		0.610350	1	0.610350	1.48856518	0.242493
2L by 4L		0.165040	1	0.165040	0.40251134	0.536027
3L by 4L		0.008879	1	0.008879	0.02165474	0.885686
Error		5.740360	14	0.410026		
TOTAL SS		12.272630	28	747074	l .	

ATRIBUTO SENSORIAL: OLOR

Cuadro N° 14 : ANVA para atributo de olor

FACTOR		SS	df	MS	F	p
(1) TEMPERATURA	(L)	0.052267	1	0.052267	0.43231520	0.521521
TEMPERATURA	(Q)	0.018106	1	0.018106	0.14975987	0.704583
(2)TIEMPO	(L)	0.345600	1	0.345600	2.85855573	0.113021
TIEMPO	(Q)	0.141760	1	0.141760	1.17253721	0.297178
(3)MASA DE VIRUTA	(L)	0.052267	1	0.052267	0.43231520	0.521521
MASA DE VIRUTA	(Q)	0.280182	1	0.280182	2.31746488	0.150192
(4)% DILUCIÓN	(L)	0.052267	1	0.052267	0.43231520	0.521521
% DILUCIÓN	(Q)	0.047233	1	0.047233	0.39067755	0.541997
1L by 2L		0.354025	1	0.354025	2.92824129	0.109097
1L by 3L		0.354025	1	0.354025	2.92824129	0.109097
1L by 4L		0.115600	1	0.115600	0.95616042	0.344752
2L by 3L		0.024025	1	0.024025	0.19871760	0.662574
2L by 4L		0.025600	1	0.025600	0.21174487	0.652469
3L by 4L		0.280900	1	0.280900	2.32340366	0.149708
Error		1.692603	14	0.120900		
TOTAL SS		3.714697	28			

ATRIBUTO SENSORIAL: SABOR

Cuadro N° 15 : ANVA para atributo de sabor.

FACTOR		SS	df	MS	F	р
(1) TEMPERATURA	(L)	0.016276	1	0.016276	0.10290459	0.753109
TEMPERATURA	(Q)	0.002676	1	0.002676	0.01691894	0.898353
(2)TIEMPO	(L)	0.005859	1	0.005859	0.03704338	0.850136
TIEMPO	(Q)	0.017246	1	0.017246	0.10903739	0.746135 _{1.}
(3)MASA DE VIRUTA	(L)	0.146484	1	0.146484	0.92614131	0.352196
MASA DE VIRUTA	(Q)	0.202212	1	0.202212	1.27848015	0.277181
(4)% DILUCIÓN	(L)	0.000651	1	0.000651	0.00411593	0.949752
% DILUCIÓN	(Q)	0.084391	1	0.084391	0.53355992	0.477161
1L by 2L		0.352539	1	0.352539	2.22891873	0.157639
1L by 3L		0.165039	1	0.165039	1.04345482	0.324347
1L by 4L		0.219727	1	0.219727	1.38921828	0.258183
2L by 3L		0.008789	1	0.008789	0.05556823	0.817056
2L by 4L		0.430664	1	0.430664	2.72286202	0.121167
3L by 4L		0.219727	1	0.219727	1.38921828	0.258183
Error		2.214323	14	0.158166		
TOTAL SS		4.031250	28	.		

ANEXO 3

CÁLCULOS DEL ANVA PARA LAS CARACTERÍSTICAS ORGANOLÉPTICAS DEL LICOR CON ESTORAQUE DESPUÉS DE 12 MESES DE AÑEJADO.

ATRIBUTO SENSORIAL: COLOR

Cuadro N° 16 : ANVA para atributo de color

FACTOR		SS	df	MS	F	р
(1) TEMPERATURA	(L)	0.005859	1	0.005859	0.05740476	0.814112
TEMPERATURA	(Q)	0.003253	1	0.003253	0.03187194	0.860857
(2)TIEMPO	(L)	0.000651	1	0.000651	0.00637831	0.937474
TIEMPO	(Q)	0.336024	1	0.336024	3.29226415	0.091089
(3)MASA DE VIRUTA	(L)	0.547526	1	0.547526	5.36449843	0.036224
MASA DE VIRUTA	(Q)	0.336024	1	0.336024	3.29226415	0.091089
(4)% DILUCIÓN	(L)	0.005859	1	0.005859	0.05740476	0.814112
% DILUCIÓN	(Q)	0.806463	1	0.806463	7.90148687	0.013878
1L by 2L		0.219727	1	0.219727	2.15282041	0.164412
1L by 3L		0.024414	1	0.024414	0.23920118	0.632356
1L by 4L		0.118144	1	0.118144	1.15754010	0.300129
2L by 3L		0.000977	1	0.000977	0.00957236	0.923465
2L by 4L		0.219727	1	0.219727	2.15282041	0.164412
3L by 4L		0.008789	1	0.008789	0.08611203	0.773784
Error		1.428906	14	0.102065		
TOTAL SS		3.812500	28			

ATRIBUTO SENSORIAL: OLOR

Cuadro N° 17 : ANVA para atributo de olor

FACTOR		SS	df	MS	F	р
(1) TEMPERATURA	(L)	0.052734	1	0.052734	0.58902572	0.455544
TEMPERATURA	(Q)	0.109095	1	0.109095	1.21856413	0.288255
(2)TIEMPO	(L)	0.031901	1	0.031901	0.35632627	0.560084
TIEMPO	(Q)	0.239585	1	0.239585	2.67610511	0.124140
(3)MASA DE VIRUTA	(L)	0.052734	1	0.052734	0.58902572	0.455544
MASA DE VIRUTA	(Q)	0.062854	1	0.062854	0.70206361	0.416168
(4)% DILUCIÓN	(L)	0.000651	1	0.000651	0.00727151	0.933250
% DILUCIÓN	(Q)	0.109095	1	0.109095	1.21856413	0.288255
1L by 2L		0.024414	1	0.024414	0.27269833	0.609691
1L by 3L		0.000977	1	0.000977	0.01091285	0.918361
1L by 4L		0.024414	1	0.024414	0.27269833	0.609661
2L by 3L		0.000977	1	0.000977	0.01091285	0.918301
2L by 4L		0.118164	1	0.118164	1.31986261	0.269867
3L by 4L		0.008789	1	0.008789	0.09817095	0.758654
Error		1.253385	14	0.089528		
TOTAL SS		1.919181	28			

ATRIBUTO SENSORIAL: SABOR

Cuadro N° 18 : ANVA para atributo de sabor

FACTOR		SS	df	MS	F	р
(1) TEMPERATURA	(L)	0.006667	1	0.006667	0.05744113	0.130310
TEMPERATURA	(Q)	0.111032	1	0.111032	0.95662277	0.339724
(2)TIEMPO	(L)	0.106667	1	0.106667	0.91901507	0.349181
TIEMPO	(Q)	0.606707	1	0.606707	5.22722935	0.033277
(3)MASA DE VIRUTA	(L)	0.201667	1	0.201667	1.73751030	0.202353
MASA DE VIRUTA	(Q)	0.042383	1	0.042383	0.36516088	0.552448 ·
(4)% DILUCIÓN	(L)	0.060000	1	0.060000	0.51694436	0.480456
% DILUCIÓN	(Q)	0.424545	1	0.424545	3.65776905	0.070238
Error		2.321333	20	0.116067		
TOTAL SS	ı	3.580000	28			

ANEXO 4

• INFORME DE RESULTADOS DEL ANÁLISIS FISICO – QUÍMICO

LA MOLINA CALIDAD TOTAL LABORATORIOS

Instituto de Certificación, Inspección y Ensayos

INFORME DE ENSAYOS

Nº 005717 - 2011

MUNDO AGROINDUSTRIAL EIRL SOLICITANTE DIRECCIÓN LEGAL Jr Leoncio Prado 1511 Tarapoto - San Martín

RUC: 20450203981 Teléfono: 042-521161

PRODUCTO LICOR DE ESTORAQUE

NÚMERO DE MUESTRAS Uno IDENTIFICACIÓN/MTRA. S.I.

CANTIDAD RECIBIDA 2 botellas de 500 ml c/u de muestra proporcionada por el solicitante.

MARCA(S)

FORMA DE PRESENTACIÓN : Envasado, la muestra ingresa en 2 botellas de vidrio selladas con 750 ml aprox. c/u

SOLICITUD DE SERVICIO S/S NºEN-003537 -2011

REFERENCIA ACEPTACION TELEFONICA

25/08/2011 **ENSAYOS SOLICITADOS** FÍSICO/QUÍMICO

PERÍODO DE CUSTODIA No aplica

RESULTADOS:

FECHA DE RECEPCIÓN

ENSAYOS FÍSICOS/QUIMICOS:

ENSAYO	RESULTADOS
I Acidez Volátil (g / L de muestra original) (Expresado como	0,02
ácido acético)	
2 Alcohol Metflico (mg / 100 mL alcohol anhidro)	197,5
3 Alcoholes Superiores Totales(mg / 100 mL alcohol anhidro)	303,7
4 Esteres (Como Acetato de Etilo)(mg / 100 mL alcohol	30,7
anhidro)	State of the state of
5 Extracto Seco(g / L de muestra original)	0,8
6 Furfural (*)(mg / 100 mL alcohol anhidro)	No detectable
7 Aldehidos(mg / 100 mL alcohol anhidro)	17,3
8 Grado Alcohólico(% v/v a 20 °C / 20 °C)	40,0
9 Azúcares Reductores Totales(g / L de muestra original)	0,0

1.- NTP 211.035 2003

2.- NTP 211.035 2003

3.- NTP 211.035 2003

4.- NTP 211.035 2003

55.- AOAC 950.36 Cap. 32 Ed. 18 Pág. 58 Revisión 4, 2011 2005

6 - NTP 211.035 2003

7 NTP 211 035 2003

8 - NTP 211 004 2004

9 - NTP 211 045 2005

Observaciones: (*) Limite de detección: 0,9 Picoamperios por segundo (pAxS) FECHA DE EJECUCION DE ENSAYOS: Del 25/08/2011 Al 31/08/2011.

